first features ready for training

This commit is contained in:
2017-11-06 21:29:55 +01:00
parent 89c6490019
commit f31f645323
12 changed files with 1861 additions and 21 deletions

View File

@@ -6,3 +6,4 @@
/include/
/lib/
/__pycache__/
*.pyc

View File

@@ -79,11 +79,70 @@ def mariadb_insert_logs(csv_entries):
def mariadb_get_logs(from_time, to_time):
get_logs_from_to = 'SELECT * FROM ' + sql_table_name + ' WHERE timestamp BETWEEN \'{}\' and \'{}\';'.format(from_time, to_time)
# get_logs_from_to = 'SELECT * FROM ' + sql_table_name + ' WHERE timestamp BETWEEN \'{}\' and \'{}\';'.format(from_time, to_time)
get_logs_from_to = 'SELECT * FROM ' + sql_table_name + ' WHERE id < 379283817;'
sql_connection.query(get_logs_from_to)
return sql_connection.use_result()
# TODO not used
# def mariadb_get_distinct_ttl(domain, from_time, to_time):
# get_distinct_ttl = 'SELECT DISTINCT ttl FROM ' + sql_table_name + \
# ' WHERE timestamp BETWEEN \'{}\' and \'{}\' '.format(from_time, to_time) + \
# 'AND domain=\'' + domain + '\';'
# sql_connection.query(get_distinct_ttl)
# return sql_connection.use_result()
def mariadb_get_logs_for_domain(domain, from_time, to_time):
# we need a second connection for this query as this usually (always) run in parallel to the first query
sql_connection_tmp = mariadb.connect(host=sql_host, user=sql_user_name, passwd=sql_pw, db=sql_db_name, port=sql_port)
# timestamp comparison super slow, check if better with index
# get_distinct_ttl = 'SELECT * FROM ' + sql_table_name + \
# ' WHERE timestamp BETWEEN \'{}\' and \'{}\' '.format(from_time, to_time) + \
# 'AND domain=\'' + domain + '\';'
get_distinct_ttl = 'SELECT * FROM ' + sql_table_name + \
' WHERE id < 379283817 ' + \
'AND domain=\'' + domain + '\';'
sql_connection_tmp.query(get_distinct_ttl)
result = sql_connection_tmp.use_result()
logs_for_domain = result.fetch_row(maxrows=0, how=1) # TODO this can consume a lot of memory, think of alternatives
sql_connection_tmp.close()
return logs_for_domain
def mariadb_get_logs_for_ip(ip, from_time, to_time):
# we need a second connection for this query as this usually (always) run in parallel to the first query
sql_connection_tmp = mariadb.connect(host=sql_host, user=sql_user_name, passwd=sql_pw, db=sql_db_name, port=sql_port)
sql_cursor_tmp = sql_connection_tmp.cursor()
# get_distinct_ttl = 'SELECT * FROM ' + sql_table_name + \
# ' WHERE timestamp BETWEEN \'{}\' and \'{}\' '.format(from_time, to_time) + \
# 'AND domain=\'' + str(ip) + '\';'
get_distinct_ttl = 'SELECT * FROM ' + sql_table_name + \
' WHERE id < 379283817 ' + \
'AND domain=\'' + str(ip) + '\';'
sql_connection_tmp.query(get_distinct_ttl)
result = sql_connection_tmp.use_result()
logs_for_ip = result.fetch_row(maxrows=0, how=1) # TODO this can consume a lot of memory, think of alternatives
# sql_cursor_tmp.close()
sql_connection_tmp.close()
return logs_for_ip
def mariadb_get_nearest_id(timestamp):
get_nearest_id = 'SELECT id FROM ' + sql_table_name + ' WHERE timestamp > \'{}\' LIMIT 1;'.format(timestamp)
sql_connection.query(get_nearest_id)
result = sql_connection.use_result()
entities = result.fetch_row(maxrows=0, how=1)
return entities[0].id
def mariadb_create_table():
create_table = 'CREATE TABLE IF NOT EXISTS ' + sql_table_name + """ (
id INTEGER AUTO_INCREMENT PRIMARY KEY,

74
src/DoresA/ip.py Normal file
View File

@@ -0,0 +1,74 @@
import re
# proudly taken from https://stackoverflow.com/questions/319279/how-to-validate-ip-address-in-python
def is_valid_ipv4(ip):
"""Validates IPv4 addresses.
"""
pattern = re.compile(r"""
^
(?:
# Dotted variants:
(?:
# Decimal 1-255 (no leading 0's)
[3-9]\d?|2(?:5[0-5]|[0-4]?\d)?|1\d{0,2}
|
0x0*[0-9a-f]{1,2} # Hexadecimal 0x0 - 0xFF (possible leading 0's)
|
0+[1-3]?[0-7]{0,2} # Octal 0 - 0377 (possible leading 0's)
)
(?: # Repeat 0-3 times, separated by a dot
\.
(?:
[3-9]\d?|2(?:5[0-5]|[0-4]?\d)?|1\d{0,2}
|
0x0*[0-9a-f]{1,2}
|
0+[1-3]?[0-7]{0,2}
)
){0,3}
|
0x0*[0-9a-f]{1,8} # Hexadecimal notation, 0x0 - 0xffffffff
|
0+[0-3]?[0-7]{0,10} # Octal notation, 0 - 037777777777
|
# Decimal notation, 1-4294967295:
429496729[0-5]|42949672[0-8]\d|4294967[01]\d\d|429496[0-6]\d{3}|
42949[0-5]\d{4}|4294[0-8]\d{5}|429[0-3]\d{6}|42[0-8]\d{7}|
4[01]\d{8}|[1-3]\d{0,9}|[4-9]\d{0,8}
)
$
""", re.VERBOSE | re.IGNORECASE)
return pattern.match(ip) is not None
def is_valid_ipv6(ip):
"""Validates IPv6 addresses.
"""
pattern = re.compile(r"""
^
\s* # Leading whitespace
(?!.*::.*::) # Only a single whildcard allowed
(?:(?!:)|:(?=:)) # Colon iff it would be part of a wildcard
(?: # Repeat 6 times:
[0-9a-f]{0,4} # A group of at most four hexadecimal digits
(?:(?<=::)|(?<!::):) # Colon unless preceeded by wildcard
){6} #
(?: # Either
[0-9a-f]{0,4} # Another group
(?:(?<=::)|(?<!::):) # Colon unless preceeded by wildcard
[0-9a-f]{0,4} # Last group
(?: (?<=::) # Colon iff preceeded by exacly one colon
| (?<!:) #
| (?<=:) (?<!::) : #
) # OR
| # A v4 address with NO leading zeros
(?:25[0-4]|2[0-4]\d|1\d\d|[1-9]?\d)
(?: \.
(?:25[0-4]|2[0-4]\d|1\d\d|[1-9]?\d)
){3}
)
\s* # Trailing whitespace
$
""", re.VERBOSE | re.IGNORECASE | re.DOTALL)
return pattern.match(ip) is not None

View File

@@ -0,0 +1,2 @@
starting analysis 1509926518.1677592
total duration: 24594.95610165596s

View File

@@ -0,0 +1,8 @@
starting training 1509988006.1670337
# entity: 99-183-224-60.lightspeed.livnmi.sbcglobal.net
[ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
1.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00
6.78306250e+03 0.00000000e+00 3.00000000e+00 0.00000000e+00
4.00000000e+00 6.07142857e-01 1.33333333e-01]
total duration: 84.75222444534302s

View File

@@ -0,0 +1,8 @@
starting training 1509985884.1062775
# entity: 99-183-224-60.lightspeed.livnmi.sbcglobal.net
[ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
1.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00
6.75526667e+03 0.00000000e+00 3.00000000e+00 0.00000000e+00
4.00000000e+00 6.07142857e-01 1.33333333e-01]
total duration: 573.4299128055573s

1544
src/DoresA/res/all-tld.txt Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1 @@
SELECT id FROM pdns_logs_test where timestamp > '2017-05-08 00:00:00' LIMIT 1;

View File

@@ -8,11 +8,10 @@ from progress.bar import Bar
import db
# TODO environment this
analysis_start_date = datetime.date(2017, 5, 1)
analysis_days_amount = 31
analysis_days_amount = 7
# pdns_logs_path = 'data/'
pdns_logs_path = '/data/'
pdns_logs_path = '/run/media/felix/ext/2017.05/'
# e.g. analysis_days = ['2017-04-07', '2017-04-08', '2017-04-09']
analysis_days = [(analysis_start_date + datetime.timedelta(days=x)).strftime('%Y-%m-%d') for x in
@@ -29,7 +28,7 @@ def main():
# everything = {}
# for log_file in ['data/pdns_capture.pcap-sgsgpdc0n9x-2017-04-07_00-00-02.csv.gz']:
for day in range(analysis_days_amount):
log_files_hour = get_log_files_for_hours_of_day(analysis_days[day])
# everything[day] = {}

View File

@@ -18,22 +18,6 @@ def variance(a):
return np.var(a)
def test_decision_tree():
from sklearn.datasets import load_iris
from sklearn import tree
iris = load_iris()
clf = tree.DecisionTreeClassifier()
clf = clf.fit(iris.data, iris.target) # training set, manual classification
# predict single or multiple sets with clf.predict([[]])
# visualize decision tree classifier
import graphviz
dot_data = tree.export_graphviz(clf, out_file=None)
graph = graphviz.Source(dot_data)
graph.render('iris', view=True)
def test():
# a = np.array((1, 2, 3))
# b = np.array((0, 1, 2))

160
src/DoresA/train.py Normal file
View File

@@ -0,0 +1,160 @@
from sklearn.datasets import load_iris
from sklearn import tree
import numpy as np
import graphviz
import datetime
import time
import db
import domain
import ip
import location
db_format_time = '%Y-%m-%d %H:%M:%S'
train_start = datetime.date(2017, 5, 1)
train_end = datetime.date(2017, 5, 2)
def get_logs_from_db():
results = db.mariadb_get_logs(train_start.strftime(db_format_time), train_end.strftime(db_format_time))
row = results.fetch_row(how=1)
print("# entity: " + row[0]['domain'])
features = prepare_features(row[0])
print(str(features))
# while row:
# print("# entity: " + row[0]['domain'])
#
# features = prepare_features(row[0])
#
# print(str(features))
#
# row = results.fetch_row(how=1)
def prepare_features(entity):
# get all logs for the same domain
logs_for_domain = db.mariadb_get_logs_for_domain(entity['domain'], train_start.strftime(db_format_time),
train_end.strftime(db_format_time))
ttls = [log['ttl'] for log in logs_for_domain]
ips = [log['record'] for log in logs_for_domain] # TODO check if valid ip address
domains_with_same_ip = []
# get all logs for the same ip if valid ip
if ip.is_valid_ipv4(entity['record']) or ip.is_valid_ipv6(entity['record']):
logs_for_ip = db.mariadb_get_logs_for_ip(entity['record'], train_start.strftime(db_format_time),
train_end.strftime(db_format_time))
domains_with_same_ip = [log['domain'] for log in logs_for_ip]
# feature 1: Short Life
short_life = 0
# feature 2: Daily Similarity
daily_similarity = 0
# feature 3: Repeating Patterns
repeating_patterns = 0
# feature 4: Access ratio
access_ratio = 0
# feature 5: Number of distinct IP addresses
distinct_ips = len(list(set(ips)))
# feature 6: Number of distinct countries
distinct_countries = len(list(set([location.get_country_by_ip(ip) for ip in list(set(ips))])))
# feature 7: Number of (distinct) domains share the IP with
distinct_domains_with_same_ip = len(list(set(domains_with_same_ip)))
# feature 8: Reverse DNS query results
reverse_dns_result = 0
# feature 9: Average TTL
average_ttl = sum(ttls) / len(ttls)
# feature 10: Standard Deviation of TTL
standard_deviation = 0
# feature 11: Number of distinct TTL values
distinct_ttl = len(list(set(ttls)))
# feature 12: Number of TTL change
ttl_changes = 0
# feature 13: Percentage usage of specific TTL ranges
# specific ranges: [0, 1], [1, 100], [100, 300], [300, 900], [900, inf]
# TODO decide if 5 individual features make a difference
ttl = entity['ttl']
specific_ttl_ranges = 4 # default is [900, inf]
if 0 < ttl <= 1:
specific_ttl_ranges = 0
elif 1 < ttl <= 100:
specific_ttl_ranges = 1
elif 100 < ttl <= 300:
specific_ttl_ranges = 2
elif 300 < ttl <= 900:
specific_ttl_ranges = 3
# feature 14: % of numerical characters
numerical_characters_percent = domain.ratio_numerical_to_alpha(entity['domain'])
# feature 15: % of the length of the LMS
lms_percent = domain.ratio_lms_to_fqdn(entity['domain'])
all_features = np.array([
short_life, daily_similarity, repeating_patterns, access_ratio, distinct_ips, distinct_countries,
distinct_domains_with_same_ip, reverse_dns_result, average_ttl, standard_deviation, distinct_ttl, ttl_changes,
specific_ttl_ranges, numerical_characters_percent, lms_percent
])
return all_features
def test():
start = time.time()
print('starting training ' + str(start))
get_logs_from_db()
print('total duration: ' + str(time.time() - start) + 's')
db.close()
# db.mariadb_get_distinct_ttl('d2s45lswxaswrw.cloudfront.net', train_start.strftime(db_format_time), train_end.strftime(db_format_time))
def flow():
iris = load_iris()
clf = tree.DecisionTreeClassifier()
clf = clf.fit(iris.data, iris.target) # training set, manual classification
# predict single or multiple sets with clf.predict([[]])
# visualize decision tree classifier
dot_data = tree.export_graphviz(clf, out_file=None)
graph = graphviz.Source(dot_data)
graph.render('test', view=True)
if __name__ == "__main__":
test()