198 lines
6.0 KiB
TeX
198 lines
6.0 KiB
TeX
%-------------------
|
|
%Header
|
|
%-------------------
|
|
|
|
%Wir verwenden eine DIN-A4-Seite und die Schriftgröße 12.
|
|
\documentclass[a4paper,12pt]{scrartcl}
|
|
\title{Expose Master's thesis Felix Steghofer}
|
|
|
|
|
|
%Diese drei Pakete benötigen wir für die Umlaute, Deutsche Silbentrennung etc.
|
|
%Apple-Nutzer sollten anstelle von \usepackage[latin1]{inputenc} das Paket \usepackage[applemac]{inputenc} verwenden
|
|
\usepackage[utf8]{inputenc}
|
|
\usepackage[english]{babel}
|
|
\usepackage[T1]{fontenc}
|
|
\usepackage{enumitem}
|
|
\usepackage{listings}
|
|
\usepackage{sidecap}
|
|
\usepackage{float}
|
|
\usepackage{todonotes}
|
|
|
|
%Das Paket erzeugt ein anklickbares Verzeichnis in der PDF-Datei.
|
|
\usepackage[hyphens]{url}
|
|
\usepackage{hyperref}
|
|
|
|
%Das Paket wird für die anderthalb-zeiligen Zeilenabstand benötigt
|
|
\usepackage{setspace}
|
|
|
|
%Einrückung eines neuen Absatzes
|
|
\setlength{\parindent}{0em}
|
|
|
|
%Definition der Ränder
|
|
\usepackage[paper=a4paper,left=30mm,right=30mm,top=30mm,bottom=30mm]{geometry}
|
|
|
|
%Links format
|
|
\hypersetup{
|
|
colorlinks = true, %Colours links instead of ugly boxes
|
|
urlcolor = blue, %Colour for external hyperlinks
|
|
linkcolor = blue, %Colour of internal links
|
|
citecolor = red %Colour of citations
|
|
}
|
|
|
|
%c++ code
|
|
\lstset{language=C++,
|
|
basicstyle=\ttfamily,
|
|
keywordstyle=\color{blue}\ttfamily,
|
|
stringstyle=\color{red}\ttfamily,
|
|
commentstyle=\color{green}\ttfamily,
|
|
frame=single,
|
|
xrightmargin=.5em,
|
|
xleftmargin=.5em
|
|
}
|
|
|
|
%Pics..
|
|
\usepackage{graphicx}
|
|
\usepackage{caption}
|
|
\usepackage{csquotes}
|
|
\usepackage{chngcntr}
|
|
\graphicspath{ {media/} }
|
|
|
|
%Pics counter
|
|
\counterwithout{figure}{section}
|
|
|
|
%Abstand der Fußnoten
|
|
\deffootnote{1em}{1em}{\textsuperscript{\thefootnotemark\ }}
|
|
|
|
%Regeln, bis zu welcher Tiefe (section,subsection,subsubsection) Überschriften angezeigt werden sollen (Anzeige der Überschriften im Verzeichnis / Anzeige der Nummerierung)
|
|
\setcounter{tocdepth}{3}
|
|
\setcounter{secnumdepth}{3}
|
|
|
|
% uncomment for bibliography
|
|
%\usepackage[backend=biber,
|
|
%style=numeric
|
|
%style=alphabetic
|
|
%style=reading
|
|
%style=authoryear-ibid
|
|
%]{bibtex}
|
|
%\addbibresource{literatur_seminararbeit}
|
|
%\defbibheading{head}{\section{Literaturverzeichnis}}
|
|
%-------------------
|
|
%Ende des Kopfbereiches
|
|
%-------------------
|
|
|
|
%-------------------
|
|
%Main
|
|
%-------------------
|
|
\begin{document}
|
|
|
|
|
|
%Beginn der Titelseite
|
|
\begin{titlepage}
|
|
\begin{small}
|
|
\vfill {Universität Passau || Siemens CERT || Master's thesis - Expose}
|
|
\end{small}
|
|
|
|
|
|
\begin{center}
|
|
\begin{Large}
|
|
\vfill{\textsf{\textbf{
|
|
Evaluation of domain reputation scoring algorithms in the field of IT-Security and development of a probabilistic hostile activities accounting algorithm.
|
|
}}}
|
|
\end{Large}
|
|
\end{center}
|
|
|
|
\begin{small}
|
|
\vfill Felix Steghofer \\ \today \\ Advisor: Thomas Penteker \\ Supervisor: Prof. Dr. rer. nat. Joachim Posegga
|
|
|
|
\end{small}
|
|
|
|
\end{titlepage}
|
|
%Ende der Titelseite
|
|
|
|
|
|
%Inhaltsverzeichnis (aktualisiert sich erst nach dem zweiten Setzen)
|
|
\tableofcontents
|
|
\thispagestyle{empty}
|
|
|
|
%Beginn einer neuen Seite
|
|
\clearpage
|
|
|
|
%Anderthalbzeiliger Zeilenabstand ab hier
|
|
\onehalfspacing
|
|
|
|
\pagestyle{plain}
|
|
|
|
|
|
\section{Abstract}
|
|
The domain name system (DNS) has been one of the corner stones of the internet
|
|
for a long time. It acts as a hierarchical, bidirectional translation device
|
|
between mnemonic domain names and network addresses. It also provides service
|
|
lookup or enrichment capabilities for a range of application protocols like
|
|
HTTP, SMTP, and SSH.
|
|
In the context of defensive IT security, investigating aspects of the DNS can
|
|
facilitate protection efforts tremendously. Estimating the reputation of
|
|
domains can help in identifying hostile activities. Such a score can, for
|
|
example, consider features like quickly changing network blocks for a given
|
|
domain or clustering of already known malicious domains and newly observed
|
|
ones.
|
|
|
|
The task of this work is to evaluate existing scoring mechanisms of domains in
|
|
the special context of IT security, and also research the potential for combining
|
|
different measurement approaches. It ultimately shall come up with an improved
|
|
and evaluated algorithm for determining the probability of a domain being
|
|
related to hostile activities.
|
|
|
|
|
|
\section{Related work}
|
|
Malware related dynamic domain reputation systems (Machine Learning approaches):
|
|
\begin{itemize}
|
|
\item Notos (passive monitoring of recursive DNS traffic, may not be complete..TODO) \cite{antonakakis2010building}
|
|
\item Exposure (like Notos, but TODO) \cite{bilge2011exposure}
|
|
\item Kopis (working in the upper DNS hierarchy) \cite{antonakakis2011detecting}
|
|
\end{itemize}
|
|
|
|
|
|
See Figure~\ref{exposure_features} for an example of possible features. (Extracted by Exposure to do the sentiment analysis)
|
|
\begin{figure}[htbp]
|
|
\centering
|
|
\includegraphics[width=.7\textwidth]{exposure_features.png}
|
|
\caption{Features used in Exposure \cite{bilge2011exposure}}
|
|
\label{exposure_features}
|
|
\end{figure}
|
|
|
|
In comparison the Features of Kopis:
|
|
|
|
Statistical Features:
|
|
Qj (d) = (Tj , Rj , d, IPsj ) where
|
|
Tj is the epoch (time of the request/response)
|
|
Rj is the IP of the requests initiator
|
|
d the queried domain and
|
|
IPsj is the set of resolved IPs for this domain as responded
|
|
|
|
\begin{itemize}
|
|
\item Requester Diversity: Where do request originate (overall)
|
|
\item Requester Profile: Is the requester a single computer or does it itself handle/serve many client (RDNS server of a large ISP). Different profiles can therefor be weighted accordingly
|
|
\item Resolved-IPs Reputation (IPR):
|
|
\end{itemize}
|
|
|
|
|
|
Comparing those three systems, Kopis successes for a dynamic, independent and global domain reputation scoring algorithm so far. It uses a supervised machine learning approach where within the training mode it uses a set of sentimentally annotated \textit{malware-related} and \textit{known legitimate} domain names to build a model based on query/response
|
|
patterns that can be used to statistically classify in operational mode.
|
|
|
|
high detection rates (e.g., 98.4%)
|
|
low false positive rates (e.g., 0.3% or 0.5%)
|
|
|
|
|
|
%
|
|
% Bibliography
|
|
%
|
|
\bibliographystyle{abbrv}
|
|
\bibliography{bib}
|
|
|
|
%list of all pictures
|
|
\listoffigures
|
|
|
|
\end{document}
|
|
%-------------------
|
|
%End
|
|
%------------------- |