added redis tools
This commit is contained in:
Binary file not shown.
Binary file not shown.
24
src/redis_tools/compile.sh
Executable file
24
src/redis_tools/compile.sh
Executable file
@@ -0,0 +1,24 @@
|
||||
#!/bin/sh
|
||||
|
||||
# this assumes that hiredis source is available through ~src/hiredis
|
||||
# paths to redis sockets are hardcoded / #define-ed in the C source
|
||||
#
|
||||
# Note:
|
||||
# hiredis*.so still has to be available during runtime via some path, the
|
||||
# runtime linker is searching in
|
||||
#
|
||||
# Starting the required redis instances can be done via:
|
||||
# for i in /somedir/*_local_*.conf; do sudo -u someuser redis-server "$i"; done
|
||||
#
|
||||
# Adjust somedir and someuser to your local setup
|
||||
#
|
||||
# ATTENTION:
|
||||
# Adjust paths to /somedir/ in the conf files (for logs, sockets and also the
|
||||
# persistent rdb dump files, dumping is NOT done automatically. Dump data to disk with:
|
||||
# for i in `seq 2337 2344`; do redis-cli -p "$i" bgsave & sleep 4m; done
|
||||
#
|
||||
# Example (parallel) pipeline to push data into the redis instances:
|
||||
# find /mnt/old/2017 -iname 'pdns_capture.pcap-*-2017-09-0[1-7]*.csv' | sort -t- -k3 | xargs -P10 -n1 ./r-4-felix
|
||||
|
||||
gcc r-4-felix.c -lhiredis -L~/src/hiredis -I~/src -o r-4-felix
|
||||
|
||||
679
src/redis_tools/configs/redis_local.conf
Executable file
679
src/redis_tools/configs/redis_local.conf
Executable file
@@ -0,0 +1,679 @@
|
||||
# Redis configuration file example
|
||||
|
||||
# Note on units: when memory size is needed, it is possible to specify
|
||||
# it in the usual form of 1k 5GB 4M and so forth:
|
||||
#
|
||||
# 1k => 1000 bytes
|
||||
# 1kb => 1024 bytes
|
||||
# 1m => 1000000 bytes
|
||||
# 1mb => 1024*1024 bytes
|
||||
# 1g => 1000000000 bytes
|
||||
# 1gb => 1024*1024*1024 bytes
|
||||
#
|
||||
# units are case insensitive so 1GB 1Gb 1gB are all the same.
|
||||
|
||||
################################## INCLUDES ###################################
|
||||
|
||||
# Include one or more other config files here. This is useful if you
|
||||
# have a standard template that goes to all Redis server but also need
|
||||
# to customize a few per-server settings. Include files can include
|
||||
# other files, so use this wisely.
|
||||
#
|
||||
# Notice option "include" won't be rewritten by command "CONFIG REWRITE"
|
||||
# from admin or Redis Sentinel. Since Redis always uses the last processed
|
||||
# line as value of a configuration directive, you'd better put includes
|
||||
# at the beginning of this file to avoid overwriting config change at runtime.
|
||||
#
|
||||
# If instead you are interested in using includes to override configuration
|
||||
# options, it is better to use include as the last line.
|
||||
#
|
||||
# include /path/to/local.conf
|
||||
# include /path/to/other.conf
|
||||
|
||||
################################ GENERAL #####################################
|
||||
|
||||
# By default Redis does not run as a daemon. Use 'yes' if you need it.
|
||||
# Note that Redis will write a pid file in /var/run/redis.pid when daemonized.
|
||||
daemonize yes
|
||||
|
||||
# Close the connection after a client is idle for N seconds (0 to disable)
|
||||
timeout 0
|
||||
|
||||
# TCP keepalive.
|
||||
#
|
||||
# If non-zero, use SO_KEEPALIVE to send TCP ACKs to clients in absence
|
||||
# of communication. This is useful for two reasons:
|
||||
#
|
||||
# 1) Detect dead peers.
|
||||
# 2) Take the connection alive from the point of view of network
|
||||
# equipment in the middle.
|
||||
#
|
||||
# On Linux, the specified value (in seconds) is the period used to send ACKs.
|
||||
# Note that to close the connection the double of the time is needed.
|
||||
# On other kernels the period depends on the kernel configuration.
|
||||
#
|
||||
# A reasonable value for this option is 60 seconds.
|
||||
tcp-keepalive 0
|
||||
|
||||
# Specify the server verbosity level.
|
||||
# This can be one of:
|
||||
# debug (a lot of information, useful for development/testing)
|
||||
# verbose (many rarely useful info, but not a mess like the debug level)
|
||||
# notice (moderately verbose, what you want in production probably)
|
||||
# warning (only very important / critical messages are logged)
|
||||
loglevel notice
|
||||
|
||||
# To enable logging to the system logger, just set 'syslog-enabled' to yes,
|
||||
# and optionally update the other syslog parameters to suit your needs.
|
||||
# syslog-enabled no
|
||||
|
||||
# Specify the syslog identity.
|
||||
# syslog-ident redis
|
||||
|
||||
# Specify the syslog facility. Must be USER or between LOCAL0-LOCAL7.
|
||||
# syslog-facility local0
|
||||
|
||||
# Set the number of databases. The default database is DB 0, you can select
|
||||
# a different one on a per-connection basis using SELECT <dbid> where
|
||||
# dbid is a number between 0 and 'databases'-1
|
||||
databases 16
|
||||
|
||||
################################ SNAPSHOTTING ################################
|
||||
#
|
||||
# Save the DB on disk:
|
||||
#
|
||||
# save <seconds> <changes>
|
||||
#
|
||||
# Will save the DB if both the given number of seconds and the given
|
||||
# number of write operations against the DB occurred.
|
||||
#
|
||||
# In the example below the behaviour will be to save:
|
||||
# after 900 sec (15 min) if at least 1 key changed
|
||||
# after 300 sec (5 min) if at least 10 keys changed
|
||||
# after 60 sec if at least 10000 keys changed
|
||||
#
|
||||
# Note: you can disable saving at all commenting all the "save" lines.
|
||||
#
|
||||
# It is also possible to remove all the previously configured save
|
||||
# points by adding a save directive with a single empty string argument
|
||||
# like in the following example:
|
||||
#
|
||||
# save ""
|
||||
# "900 1 300 10 60 10000"
|
||||
#
|
||||
|
||||
# By default Redis will stop accepting writes if RDB snapshots are enabled
|
||||
# (at least one save point) and the latest background save failed.
|
||||
# This will make the user aware (in a hard way) that data is not persisting
|
||||
# on disk properly, otherwise chances are that no one will notice and some
|
||||
# disaster will happen.
|
||||
#
|
||||
# If the background saving process will start working again Redis will
|
||||
# automatically allow writes again.
|
||||
#
|
||||
# However if you have setup your proper monitoring of the Redis server
|
||||
# and persistence, you may want to disable this feature so that Redis will
|
||||
# continue to work as usual even if there are problems with disk,
|
||||
# permissions, and so forth.
|
||||
stop-writes-on-bgsave-error yes
|
||||
|
||||
# Compress string objects using LZF when dump .rdb databases?
|
||||
# For default that's set to 'yes' as it's almost always a win.
|
||||
# If you want to save some CPU in the saving child set it to 'no' but
|
||||
# the dataset will likely be bigger if you have compressible values or keys.
|
||||
rdbcompression yes
|
||||
|
||||
# Since version 5 of RDB a CRC64 checksum is placed at the end of the file.
|
||||
# This makes the format more resistant to corruption but there is a performance
|
||||
# hit to pay (around 10%) when saving and loading RDB files, so you can disable it
|
||||
# for maximum performances.
|
||||
#
|
||||
# RDB files created with checksum disabled have a checksum of zero that will
|
||||
# tell the loading code to skip the check.
|
||||
rdbchecksum yes
|
||||
|
||||
# The working directory.
|
||||
#
|
||||
# The DB will be written inside this directory, with the filename specified
|
||||
# above using the 'dbfilename' configuration directive.
|
||||
#
|
||||
# The Append Only File will also be created inside this directory.
|
||||
#
|
||||
# Note that you must specify a directory here, not a file name.
|
||||
#dir /home/tek
|
||||
dir /home/felix/redis/redis
|
||||
|
||||
################################# REPLICATION #################################
|
||||
|
||||
# Master-Slave replication. Use slaveof to make a Redis instance a copy of
|
||||
# another Redis server. Note that the configuration is local to the slave
|
||||
# so for example it is possible to configure the slave to save the DB with a
|
||||
# different interval, or to listen to another port, and so on.
|
||||
#
|
||||
# slaveof <masterip> <masterport>
|
||||
|
||||
# If the master is password protected (using the "requirepass" configuration
|
||||
# directive below) it is possible to tell the slave to authenticate before
|
||||
# starting the replication synchronization process, otherwise the master will
|
||||
# refuse the slave request.
|
||||
#
|
||||
# masterauth <master-password>
|
||||
|
||||
# When a slave loses its connection with the master, or when the replication
|
||||
# is still in progress, the slave can act in two different ways:
|
||||
#
|
||||
# 1) if slave-serve-stale-data is set to 'yes' (the default) the slave will
|
||||
# still reply to client requests, possibly with out of date data, or the
|
||||
# data set may just be empty if this is the first synchronization.
|
||||
#
|
||||
# 2) if slave-serve-stale-data is set to 'no' the slave will reply with
|
||||
# an error "SYNC with master in progress" to all the kind of commands
|
||||
# but to INFO and SLAVEOF.
|
||||
#
|
||||
slave-serve-stale-data yes
|
||||
|
||||
# You can configure a slave instance to accept writes or not. Writing against
|
||||
# a slave instance may be useful to store some ephemeral data (because data
|
||||
# written on a slave will be easily deleted after resync with the master) but
|
||||
# may also cause problems if clients are writing to it because of a
|
||||
# misconfiguration.
|
||||
#
|
||||
# Since Redis 2.6 by default slaves are read-only.
|
||||
#
|
||||
# Note: read only slaves are not designed to be exposed to untrusted clients
|
||||
# on the internet. It's just a protection layer against misuse of the instance.
|
||||
# Still a read only slave exports by default all the administrative commands
|
||||
# such as CONFIG, DEBUG, and so forth. To a limited extent you can improve
|
||||
# security of read only slaves using 'rename-command' to shadow all the
|
||||
# administrative / dangerous commands.
|
||||
slave-read-only yes
|
||||
|
||||
# Slaves send PINGs to server in a predefined interval. It's possible to change
|
||||
# this interval with the repl_ping_slave_period option. The default value is 10
|
||||
# seconds.
|
||||
#
|
||||
# repl-ping-slave-period 10
|
||||
|
||||
# The following option sets the replication timeout for:
|
||||
#
|
||||
# 1) Bulk transfer I/O during SYNC, from the point of view of slave.
|
||||
# 2) Master timeout from the point of view of slaves (data, pings).
|
||||
# 3) Slave timeout from the point of view of masters (REPLCONF ACK pings).
|
||||
#
|
||||
# It is important to make sure that this value is greater than the value
|
||||
# specified for repl-ping-slave-period otherwise a timeout will be detected
|
||||
# every time there is low traffic between the master and the slave.
|
||||
#
|
||||
# repl-timeout 60
|
||||
|
||||
# Disable TCP_NODELAY on the slave socket after SYNC?
|
||||
#
|
||||
# If you select "yes" Redis will use a smaller number of TCP packets and
|
||||
# less bandwidth to send data to slaves. But this can add a delay for
|
||||
# the data to appear on the slave side, up to 40 milliseconds with
|
||||
# Linux kernels using a default configuration.
|
||||
#
|
||||
# If you select "no" the delay for data to appear on the slave side will
|
||||
# be reduced but more bandwidth will be used for replication.
|
||||
#
|
||||
# By default we optimize for low latency, but in very high traffic conditions
|
||||
# or when the master and slaves are many hops away, turning this to "yes" may
|
||||
# be a good idea.
|
||||
repl-disable-tcp-nodelay no
|
||||
|
||||
# Set the replication backlog size. The backlog is a buffer that accumulates
|
||||
# slave data when slaves are disconnected for some time, so that when a slave
|
||||
# wants to reconnect again, often a full resync is not needed, but a partial
|
||||
# resync is enough, just passing the portion of data the slave missed while
|
||||
# disconnected.
|
||||
#
|
||||
# The biggest the replication backlog, the longer the time the slave can be
|
||||
# disconnected and later be able to perform a partial resynchronization.
|
||||
#
|
||||
# The backlog is only allocated once there is at least a slave connected.
|
||||
#
|
||||
# repl-backlog-size 1mb
|
||||
|
||||
# After a master has no longer connected slaves for some time, the backlog
|
||||
# will be freed. The following option configures the amount of seconds that
|
||||
# need to elapse, starting from the time the last slave disconnected, for
|
||||
# the backlog buffer to be freed.
|
||||
#
|
||||
# A value of 0 means to never release the backlog.
|
||||
#
|
||||
# repl-backlog-ttl 3600
|
||||
|
||||
# The slave priority is an integer number published by Redis in the INFO output.
|
||||
# It is used by Redis Sentinel in order to select a slave to promote into a
|
||||
# master if the master is no longer working correctly.
|
||||
#
|
||||
# A slave with a low priority number is considered better for promotion, so
|
||||
# for instance if there are three slaves with priority 10, 100, 25 Sentinel will
|
||||
# pick the one with priority 10, that is the lowest.
|
||||
#
|
||||
# However a special priority of 0 marks the slave as not able to perform the
|
||||
# role of master, so a slave with priority of 0 will never be selected by
|
||||
# Redis Sentinel for promotion.
|
||||
#
|
||||
# By default the priority is 100.
|
||||
slave-priority 100
|
||||
|
||||
# It is possible for a master to stop accepting writes if there are less than
|
||||
# N slaves connected, having a lag less or equal than M seconds.
|
||||
#
|
||||
# The N slaves need to be in "online" state.
|
||||
#
|
||||
# The lag in seconds, that must be <= the specified value, is calculated from
|
||||
# the last ping received from the slave, that is usually sent every second.
|
||||
#
|
||||
# This option does not GUARANTEES that N replicas will accept the write, but
|
||||
# will limit the window of exposure for lost writes in case not enough slaves
|
||||
# are available, to the specified number of seconds.
|
||||
#
|
||||
# For example to require at least 3 slaves with a lag <= 10 seconds use:
|
||||
#
|
||||
# min-slaves-to-write 3
|
||||
# min-slaves-max-lag 10
|
||||
#
|
||||
# Setting one or the other to 0 disables the feature.
|
||||
#
|
||||
# By default min-slaves-to-write is set to 0 (feature disabled) and
|
||||
# min-slaves-max-lag is set to 10.
|
||||
|
||||
################################## SECURITY ###################################
|
||||
|
||||
# Require clients to issue AUTH <PASSWORD> before processing any other
|
||||
# commands. This might be useful in environments in which you do not trust
|
||||
# others with access to the host running redis-server.
|
||||
#
|
||||
# This should stay commented out for backward compatibility and because most
|
||||
# people do not need auth (e.g. they run their own servers).
|
||||
#
|
||||
# Warning: since Redis is pretty fast an outside user can try up to
|
||||
# 150k passwords per second against a good box. This means that you should
|
||||
# use a very strong password otherwise it will be very easy to break.
|
||||
#
|
||||
# requirepass foobared
|
||||
|
||||
# Command renaming.
|
||||
#
|
||||
# It is possible to change the name of dangerous commands in a shared
|
||||
# environment. For instance the CONFIG command may be renamed into something
|
||||
# hard to guess so that it will still be available for internal-use tools
|
||||
# but not available for general clients.
|
||||
#
|
||||
# Example:
|
||||
#
|
||||
# rename-command CONFIG b840fc02d524045429941cc15f59e41cb7be6c52
|
||||
#
|
||||
# It is also possible to completely kill a command by renaming it into
|
||||
# an empty string:
|
||||
#
|
||||
# rename-command CONFIG ""
|
||||
#
|
||||
# Please note that changing the name of commands that are logged into the
|
||||
# AOF file or transmitted to slaves may cause problems.
|
||||
|
||||
################################### LIMITS ####################################
|
||||
|
||||
# Set the max number of connected clients at the same time. By default
|
||||
# this limit is set to 10000 clients, however if the Redis server is not
|
||||
# able to configure the process file limit to allow for the specified limit
|
||||
# the max number of allowed clients is set to the current file limit
|
||||
# minus 32 (as Redis reserves a few file descriptors for internal uses).
|
||||
#
|
||||
# Once the limit is reached Redis will close all the new connections sending
|
||||
# an error 'max number of clients reached'.
|
||||
#
|
||||
# maxclients 10000
|
||||
|
||||
# Don't use more memory than the specified amount of bytes.
|
||||
# When the memory limit is reached Redis will try to remove keys
|
||||
# according to the eviction policy selected (see maxmemory-policy).
|
||||
#
|
||||
# If Redis can't remove keys according to the policy, or if the policy is
|
||||
# set to 'noeviction', Redis will start to reply with errors to commands
|
||||
# that would use more memory, like SET, LPUSH, and so on, and will continue
|
||||
# to reply to read-only commands like GET.
|
||||
#
|
||||
# This option is usually useful when using Redis as an LRU cache, or to set
|
||||
# a hard memory limit for an instance (using the 'noeviction' policy).
|
||||
#
|
||||
# WARNING: If you have slaves attached to an instance with maxmemory on,
|
||||
# the size of the output buffers needed to feed the slaves are subtracted
|
||||
# from the used memory count, so that network problems / resyncs will
|
||||
# not trigger a loop where keys are evicted, and in turn the output
|
||||
# buffer of slaves is full with DELs of keys evicted triggering the deletion
|
||||
# of more keys, and so forth until the database is completely emptied.
|
||||
#
|
||||
# In short... if you have slaves attached it is suggested that you set a lower
|
||||
# limit for maxmemory so that there is some free RAM on the system for slave
|
||||
# output buffers (but this is not needed if the policy is 'noeviction').
|
||||
#
|
||||
# maxmemory <bytes>
|
||||
maxmemory 205925520000
|
||||
|
||||
# MAXMEMORY POLICY: how Redis will select what to remove when maxmemory
|
||||
# is reached. You can select among five behaviors:
|
||||
#
|
||||
# volatile-lru -> remove the key with an expire set using an LRU algorithm
|
||||
# allkeys-lru -> remove any key accordingly to the LRU algorithm
|
||||
# volatile-random -> remove a random key with an expire set
|
||||
# allkeys-random -> remove a random key, any key
|
||||
# volatile-ttl -> remove the key with the nearest expire time (minor TTL)
|
||||
# noeviction -> don't expire at all, just return an error on write operations
|
||||
#
|
||||
# Note: with any of the above policies, Redis will return an error on write
|
||||
# operations, when there are not suitable keys for eviction.
|
||||
#
|
||||
# At the date of writing this commands are: set setnx setex append
|
||||
# incr decr rpush lpush rpushx lpushx linsert lset rpoplpush sadd
|
||||
# sinter sinterstore sunion sunionstore sdiff sdiffstore zadd zincrby
|
||||
# zunionstore zinterstore hset hsetnx hmset hincrby incrby decrby
|
||||
# getset mset msetnx exec sort
|
||||
#
|
||||
# The default is:
|
||||
#
|
||||
# maxmemory-policy volatile-lru
|
||||
maxmemory-policy noeviction
|
||||
|
||||
# LRU and minimal TTL algorithms are not precise algorithms but approximated
|
||||
# algorithms (in order to save memory), so you can select as well the sample
|
||||
# size to check. For instance for default Redis will check three keys and
|
||||
# pick the one that was used less recently, you can change the sample size
|
||||
# using the following configuration directive.
|
||||
#
|
||||
# maxmemory-samples 3
|
||||
|
||||
############################## APPEND ONLY MODE ###############################
|
||||
|
||||
# By default Redis asynchronously dumps the dataset on disk. This mode is
|
||||
# good enough in many applications, but an issue with the Redis process or
|
||||
# a power outage may result into a few minutes of writes lost (depending on
|
||||
# the configured save points).
|
||||
#
|
||||
# The Append Only File is an alternative persistence mode that provides
|
||||
# much better durability. For instance using the default data fsync policy
|
||||
# (see later in the config file) Redis can lose just one second of writes in a
|
||||
# dramatic event like a server power outage, or a single write if something
|
||||
# wrong with the Redis process itself happens, but the operating system is
|
||||
# still running correctly.
|
||||
#
|
||||
# AOF and RDB persistence can be enabled at the same time without problems.
|
||||
# If the AOF is enabled on startup Redis will load the AOF, that is the file
|
||||
# with the better durability guarantees.
|
||||
#
|
||||
# Please check http://redis.io/topics/persistence for more information.
|
||||
|
||||
appendonly no
|
||||
|
||||
# The name of the append only file (default: "appendonly.aof")
|
||||
|
||||
appendfilename "appendonly.aof"
|
||||
|
||||
# The fsync() call tells the Operating System to actually write data on disk
|
||||
# instead to wait for more data in the output buffer. Some OS will really flush
|
||||
# data on disk, some other OS will just try to do it ASAP.
|
||||
#
|
||||
# Redis supports three different modes:
|
||||
#
|
||||
# no: don't fsync, just let the OS flush the data when it wants. Faster.
|
||||
# always: fsync after every write to the append only log . Slow, Safest.
|
||||
# everysec: fsync only one time every second. Compromise.
|
||||
#
|
||||
# The default is "everysec", as that's usually the right compromise between
|
||||
# speed and data safety. It's up to you to understand if you can relax this to
|
||||
# "no" that will let the operating system flush the output buffer when
|
||||
# it wants, for better performances (but if you can live with the idea of
|
||||
# some data loss consider the default persistence mode that's snapshotting),
|
||||
# or on the contrary, use "always" that's very slow but a bit safer than
|
||||
# everysec.
|
||||
#
|
||||
# More details please check the following article:
|
||||
# http://antirez.com/post/redis-persistence-demystified.html
|
||||
#
|
||||
# If unsure, use "everysec".
|
||||
|
||||
# appendfsync always
|
||||
appendfsync everysec
|
||||
# appendfsync no
|
||||
|
||||
# When the AOF fsync policy is set to always or everysec, and a background
|
||||
# saving process (a background save or AOF log background rewriting) is
|
||||
# performing a lot of I/O against the disk, in some Linux configurations
|
||||
# Redis may block too long on the fsync() call. Note that there is no fix for
|
||||
# this currently, as even performing fsync in a different thread will block
|
||||
# our synchronous write(2) call.
|
||||
#
|
||||
# In order to mitigate this problem it's possible to use the following option
|
||||
# that will prevent fsync() from being called in the main process while a
|
||||
# BGSAVE or BGREWRITEAOF is in progress.
|
||||
#
|
||||
# This means that while another child is saving, the durability of Redis is
|
||||
# the same as "appendfsync none". In practical terms, this means that it is
|
||||
# possible to lose up to 30 seconds of log in the worst scenario (with the
|
||||
# default Linux settings).
|
||||
#
|
||||
# If you have latency problems turn this to "yes". Otherwise leave it as
|
||||
# "no" that is the safest pick from the point of view of durability.
|
||||
|
||||
no-appendfsync-on-rewrite no
|
||||
|
||||
# Automatic rewrite of the append only file.
|
||||
# Redis is able to automatically rewrite the log file implicitly calling
|
||||
# BGREWRITEAOF when the AOF log size grows by the specified percentage.
|
||||
#
|
||||
# This is how it works: Redis remembers the size of the AOF file after the
|
||||
# latest rewrite (if no rewrite has happened since the restart, the size of
|
||||
# the AOF at startup is used).
|
||||
#
|
||||
# This base size is compared to the current size. If the current size is
|
||||
# bigger than the specified percentage, the rewrite is triggered. Also
|
||||
# you need to specify a minimal size for the AOF file to be rewritten, this
|
||||
# is useful to avoid rewriting the AOF file even if the percentage increase
|
||||
# is reached but it is still pretty small.
|
||||
#
|
||||
# Specify a percentage of zero in order to disable the automatic AOF
|
||||
# rewrite feature.
|
||||
|
||||
auto-aof-rewrite-percentage 100
|
||||
auto-aof-rewrite-min-size 64mb
|
||||
|
||||
################################ LUA SCRIPTING ###############################
|
||||
|
||||
# Max execution time of a Lua script in milliseconds.
|
||||
#
|
||||
# If the maximum execution time is reached Redis will log that a script is
|
||||
# still in execution after the maximum allowed time and will start to
|
||||
# reply to queries with an error.
|
||||
#
|
||||
# When a long running script exceed the maximum execution time only the
|
||||
# SCRIPT KILL and SHUTDOWN NOSAVE commands are available. The first can be
|
||||
# used to stop a script that did not yet called write commands. The second
|
||||
# is the only way to shut down the server in the case a write commands was
|
||||
# already issue by the script but the user don't want to wait for the natural
|
||||
# termination of the script.
|
||||
#
|
||||
# Set it to 0 or a negative value for unlimited execution without warnings.
|
||||
lua-time-limit 5000
|
||||
|
||||
################################## SLOW LOG ###################################
|
||||
|
||||
# The Redis Slow Log is a system to log queries that exceeded a specified
|
||||
# execution time. The execution time does not include the I/O operations
|
||||
# like talking with the client, sending the reply and so forth,
|
||||
# but just the time needed to actually execute the command (this is the only
|
||||
# stage of command execution where the thread is blocked and can not serve
|
||||
# other requests in the meantime).
|
||||
#
|
||||
# You can configure the slow log with two parameters: one tells Redis
|
||||
# what is the execution time, in microseconds, to exceed in order for the
|
||||
# command to get logged, and the other parameter is the length of the
|
||||
# slow log. When a new command is logged the oldest one is removed from the
|
||||
# queue of logged commands.
|
||||
|
||||
# The following time is expressed in microseconds, so 1000000 is equivalent
|
||||
# to one second. Note that a negative number disables the slow log, while
|
||||
# a value of zero forces the logging of every command.
|
||||
slowlog-log-slower-than 10000
|
||||
|
||||
# There is no limit to this length. Just be aware that it will consume memory.
|
||||
# You can reclaim memory used by the slow log with SLOWLOG RESET.
|
||||
slowlog-max-len 128
|
||||
|
||||
############################# Event notification ##############################
|
||||
|
||||
# Redis can notify Pub/Sub clients about events happening in the key space.
|
||||
# This feature is documented at http://redis.io/topics/keyspace-events
|
||||
#
|
||||
# For instance if keyspace events notification is enabled, and a client
|
||||
# performs a DEL operation on key "foo" stored in the Database 0, two
|
||||
# messages will be published via Pub/Sub:
|
||||
#
|
||||
# PUBLISH __keyspace@0__:foo del
|
||||
# PUBLISH __keyevent@0__:del foo
|
||||
#
|
||||
# It is possible to select the events that Redis will notify among a set
|
||||
# of classes. Every class is identified by a single character:
|
||||
#
|
||||
# K Keyspace events, published with __keyspace@<db>__ prefix.
|
||||
# E Keyevent events, published with __keyevent@<db>__ prefix.
|
||||
# g Generic commands (non-type specific) like DEL, EXPIRE, RENAME, ...
|
||||
# $ String commands
|
||||
# l List commands
|
||||
# s Set commands
|
||||
# h Hash commands
|
||||
# z Sorted set commands
|
||||
# x Expired events (events generated every time a key expires)
|
||||
# e Evicted events (events generated when a key is evicted for maxmemory)
|
||||
# A Alias for g$lshzxe, so that the "AKE" string means all the events.
|
||||
#
|
||||
# The "notify-keyspace-events" takes as argument a string that is composed
|
||||
# by zero or multiple characters. The empty string means that notifications
|
||||
# are disabled at all.
|
||||
#
|
||||
# Example: to enable list and generic events, from the point of view of the
|
||||
# event name, use:
|
||||
#
|
||||
# notify-keyspace-events Elg
|
||||
#
|
||||
# Example 2: to get the stream of the expired keys subscribing to channel
|
||||
# name __keyevent@0__:expired use:
|
||||
#
|
||||
# notify-keyspace-events Ex
|
||||
#
|
||||
# By default all notifications are disabled because most users don't need
|
||||
# this feature and the feature has some overhead. Note that if you don't
|
||||
# specify at least one of K or E, no events will be delivered.
|
||||
notify-keyspace-events ""
|
||||
|
||||
############################### ADVANCED CONFIG ###############################
|
||||
|
||||
# Hashes are encoded using a memory efficient data structure when they have a
|
||||
# small number of entries, and the biggest entry does not exceed a given
|
||||
# threshold. These thresholds can be configured using the following directives.
|
||||
# values determined by empirical measuring..
|
||||
hash-max-ziplist-entries 15000
|
||||
#hash-max-ziplist-value 128
|
||||
hash-max-ziplist-value 400
|
||||
|
||||
# Similarly to hashes, small lists are also encoded in a special way in order
|
||||
# to save a lot of space. The special representation is only used when
|
||||
# you are under the following limits:
|
||||
list-max-ziplist-entries 512
|
||||
list-max-ziplist-value 64
|
||||
|
||||
# Sets have a special encoding in just one case: when a set is composed
|
||||
# of just strings that happens to be integers in radix 10 in the range
|
||||
# of 64 bit signed integers.
|
||||
# The following configuration setting sets the limit in the size of the
|
||||
# set in order to use this special memory saving encoding.
|
||||
set-max-intset-entries 512
|
||||
|
||||
# Similarly to hashes and lists, sorted sets are also specially encoded in
|
||||
# order to save a lot of space. This encoding is only used when the length and
|
||||
# elements of a sorted set are below the following limits:
|
||||
zset-max-ziplist-entries 128
|
||||
zset-max-ziplist-value 64
|
||||
|
||||
# Active rehashing uses 1 millisecond every 100 milliseconds of CPU time in
|
||||
# order to help rehashing the main Redis hash table (the one mapping top-level
|
||||
# keys to values). The hash table implementation Redis uses (see dict.c)
|
||||
# performs a lazy rehashing: the more operation you run into a hash table
|
||||
# that is rehashing, the more rehashing "steps" are performed, so if the
|
||||
# server is idle the rehashing is never complete and some more memory is used
|
||||
# by the hash table.
|
||||
#
|
||||
# The default is to use this millisecond 10 times every second in order to
|
||||
# active rehashing the main dictionaries, freeing memory when possible.
|
||||
#
|
||||
# If unsure:
|
||||
# use "activerehashing no" if you have hard latency requirements and it is
|
||||
# not a good thing in your environment that Redis can reply form time to time
|
||||
# to queries with 2 milliseconds delay.
|
||||
#
|
||||
# use "activerehashing yes" if you don't have such hard requirements but
|
||||
# want to free memory asap when possible.
|
||||
activerehashing yes
|
||||
|
||||
# The client output buffer limits can be used to force disconnection of clients
|
||||
# that are not reading data from the server fast enough for some reason (a
|
||||
# common reason is that a Pub/Sub client can't consume messages as fast as the
|
||||
# publisher can produce them).
|
||||
#
|
||||
# The limit can be set differently for the three different classes of clients:
|
||||
#
|
||||
# normal -> normal clients
|
||||
# slave -> slave clients and MONITOR clients
|
||||
# pubsub -> clients subscribed to at least one pubsub channel or pattern
|
||||
#
|
||||
# The syntax of every client-output-buffer-limit directive is the following:
|
||||
#
|
||||
# client-output-buffer-limit <class> <hard limit> <soft limit> <soft seconds>
|
||||
#
|
||||
# A client is immediately disconnected once the hard limit is reached, or if
|
||||
# the soft limit is reached and remains reached for the specified number of
|
||||
# seconds (continuously).
|
||||
# So for instance if the hard limit is 32 megabytes and the soft limit is
|
||||
# 16 megabytes / 10 seconds, the client will get disconnected immediately
|
||||
# if the size of the output buffers reach 32 megabytes, but will also get
|
||||
# disconnected if the client reaches 16 megabytes and continuously overcomes
|
||||
# the limit for 10 seconds.
|
||||
#
|
||||
# By default normal clients are not limited because they don't receive data
|
||||
# without asking (in a push way), but just after a request, so only
|
||||
# asynchronous clients may create a scenario where data is requested faster
|
||||
# than it can read.
|
||||
#
|
||||
# Instead there is a default limit for pubsub and slave clients, since
|
||||
# subscribers and slaves receive data in a push fashion.
|
||||
#
|
||||
# Both the hard or the soft limit can be disabled by setting them to zero.
|
||||
client-output-buffer-limit normal 0 0 0
|
||||
client-output-buffer-limit slave 256mb 64mb 60
|
||||
client-output-buffer-limit pubsub 32mb 8mb 60
|
||||
|
||||
# Redis calls an internal function to perform many background tasks, like
|
||||
# closing connections of clients in timeout, purging expired keys that are
|
||||
# never requested, and so forth.
|
||||
#
|
||||
# Not all tasks are performed with the same frequency, but Redis checks for
|
||||
# tasks to perform accordingly to the specified "hz" value.
|
||||
#
|
||||
# By default "hz" is set to 10. Raising the value will use more CPU when
|
||||
# Redis is idle, but at the same time will make Redis more responsive when
|
||||
# there are many keys expiring at the same time, and timeouts may be
|
||||
# handled with more precision.
|
||||
#
|
||||
# The range is between 1 and 500, however a value over 100 is usually not
|
||||
# a good idea. Most users should use the default of 10 and raise this up to
|
||||
# 100 only in environments where very low latency is required.
|
||||
hz 10
|
||||
|
||||
# When a child rewrites the AOF file, if the following option is enabled
|
||||
# the file will be fsync-ed every 32 MB of data generated. This is useful
|
||||
# in order to commit the file to the disk more incrementally and avoid
|
||||
# big latency spikes.
|
||||
aof-rewrite-incremental-fsync yes
|
||||
|
||||
protected-mode no
|
||||
28
src/redis_tools/configs/redis_local_f.conf
Executable file
28
src/redis_tools/configs/redis_local_f.conf
Executable file
@@ -0,0 +1,28 @@
|
||||
# Redis configuration file example
|
||||
################################## INCLUDES ###################################
|
||||
|
||||
include redis_local.conf
|
||||
|
||||
# When running daemonized, Redis writes a pid file in /var/run/redis.pid by
|
||||
# default. You can specify a custom pid file location here.
|
||||
pidfile /home/felix/redis/redis/redis-server_f.pid
|
||||
|
||||
# Accept connections on the specified port, default is 6379.
|
||||
# If port 0 is specified Redis will not listen on a TCP socket.
|
||||
port 2337
|
||||
|
||||
# Specify the path for the unix socket that will be used to listen for
|
||||
# incoming connections. There is no default, so Redis will not listen
|
||||
# on a unix socket when not specified.
|
||||
# yields better performance than loopback
|
||||
unixsocket /home/felix/redis/redis/redis_local_f.sock
|
||||
unixsocketperm 755
|
||||
|
||||
# Specify the log file name. Also the empty string can be used to force
|
||||
# Redis to log on the standard output. Note that if you use standard
|
||||
# output for logging but daemonize, logs will be sent to /dev/null
|
||||
logfile /home/felix/redis/redis/redis-server_f.log
|
||||
|
||||
# The filename where to dump the DB
|
||||
dbfilename dump_f.rdb
|
||||
|
||||
28
src/redis_tools/configs/redis_local_f2.conf
Executable file
28
src/redis_tools/configs/redis_local_f2.conf
Executable file
@@ -0,0 +1,28 @@
|
||||
# Redis configuration file example
|
||||
################################## INCLUDES ###################################
|
||||
|
||||
include redis_local.conf
|
||||
|
||||
# When running daemonized, Redis writes a pid file in /var/run/redis.pid by
|
||||
# default. You can specify a custom pid file location here.
|
||||
pidfile /home/felix/redis/redis/redis-server_f2.pid
|
||||
|
||||
# Accept connections on the specified port, default is 6379.
|
||||
# If port 0 is specified Redis will not listen on a TCP socket.
|
||||
port 2338
|
||||
|
||||
# Specify the path for the unix socket that will be used to listen for
|
||||
# incoming connections. There is no default, so Redis will not listen
|
||||
# on a unix socket when not specified.
|
||||
# yields better performance than loopback
|
||||
unixsocket /home/felix/redis/redis/redis_local_f2.sock
|
||||
unixsocketperm 755
|
||||
|
||||
# Specify the log file name. Also the empty string can be used to force
|
||||
# Redis to log on the standard output. Note that if you use standard
|
||||
# output for logging but daemonize, logs will be sent to /dev/null
|
||||
logfile /home/felix/redis/redis/redis-server_f2.log
|
||||
|
||||
# The filename where to dump the DB
|
||||
dbfilename dump_f2.rdb
|
||||
|
||||
28
src/redis_tools/configs/redis_local_f3.conf
Executable file
28
src/redis_tools/configs/redis_local_f3.conf
Executable file
@@ -0,0 +1,28 @@
|
||||
# Redis configuration file example
|
||||
################################## INCLUDES ###################################
|
||||
|
||||
include redis_local.conf
|
||||
|
||||
# When running daemonized, Redis writes a pid file in /var/run/redis.pid by
|
||||
# default. You can specify a custom pid file location here.
|
||||
pidfile /home/felix/redis/redis/redis-server_f3.pid
|
||||
|
||||
# Accept connections on the specified port, default is 6379.
|
||||
# If port 0 is specified Redis will not listen on a TCP socket.
|
||||
port 2339
|
||||
|
||||
# Specify the path for the unix socket that will be used to listen for
|
||||
# incoming connections. There is no default, so Redis will not listen
|
||||
# on a unix socket when not specified.
|
||||
# yields better performance than loopback
|
||||
unixsocket /home/felix/redis/redis/redis_local_f3.sock
|
||||
unixsocketperm 755
|
||||
|
||||
# Specify the log file name. Also the empty string can be used to force
|
||||
# Redis to log on the standard output. Note that if you use standard
|
||||
# output for logging but daemonize, logs will be sent to /dev/null
|
||||
logfile /home/felix/redis/redis/redis-server_f3.log
|
||||
|
||||
# The filename where to dump the DB
|
||||
dbfilename dump_f3.rdb
|
||||
|
||||
28
src/redis_tools/configs/redis_local_l.conf
Executable file
28
src/redis_tools/configs/redis_local_l.conf
Executable file
@@ -0,0 +1,28 @@
|
||||
# Redis configuration file example
|
||||
################################## INCLUDES ###################################
|
||||
|
||||
include redis_local.conf
|
||||
|
||||
# When running daemonized, Redis writes a pid file in /var/run/redis.pid by
|
||||
# default. You can specify a custom pid file location here.
|
||||
pidfile /home/felix/redis/redis/redis-server_l.pid
|
||||
|
||||
# Accept connections on the specified port, default is 6379.
|
||||
# If port 0 is specified Redis will not listen on a TCP socket.
|
||||
port 2340
|
||||
|
||||
# Specify the path for the unix socket that will be used to listen for
|
||||
# incoming connections. There is no default, so Redis will not listen
|
||||
# on a unix socket when not specified.
|
||||
# yields better performance than loopback
|
||||
unixsocket /home/felix/redis/redis/redis_local_l.sock
|
||||
unixsocketperm 755
|
||||
|
||||
# Specify the log file name. Also the empty string can be used to force
|
||||
# Redis to log on the standard output. Note that if you use standard
|
||||
# output for logging but daemonize, logs will be sent to /dev/null
|
||||
logfile /home/felix/redis/redis/redis-server_l.log
|
||||
|
||||
# The filename where to dump the DB
|
||||
dbfilename dump_l.rdb
|
||||
|
||||
28
src/redis_tools/configs/redis_local_l2.conf
Executable file
28
src/redis_tools/configs/redis_local_l2.conf
Executable file
@@ -0,0 +1,28 @@
|
||||
# Redis configuration file example
|
||||
################################## INCLUDES ###################################
|
||||
|
||||
include redis_local.conf
|
||||
|
||||
# When running daemonized, Redis writes a pid file in /var/run/redis.pid by
|
||||
# default. You can specify a custom pid file location here.
|
||||
pidfile /home/felix/redis/redis/redis-server_l2.pid
|
||||
|
||||
# Accept connections on the specified port, default is 6379.
|
||||
# If port 0 is specified Redis will not listen on a TCP socket.
|
||||
port 2341
|
||||
|
||||
# Specify the path for the unix socket that will be used to listen for
|
||||
# incoming connections. There is no default, so Redis will not listen
|
||||
# on a unix socket when not specified.
|
||||
# yields better performance than loopback
|
||||
unixsocket /home/felix/redis/redis/redis_local_l2.sock
|
||||
unixsocketperm 755
|
||||
|
||||
# Specify the log file name. Also the empty string can be used to force
|
||||
# Redis to log on the standard output. Note that if you use standard
|
||||
# output for logging but daemonize, logs will be sent to /dev/null
|
||||
logfile /home/felix/redis/redis/redis-server_l2.log
|
||||
|
||||
# The filename where to dump the DB
|
||||
dbfilename dump_l2.rdb
|
||||
|
||||
28
src/redis_tools/configs/redis_local_l3.conf
Executable file
28
src/redis_tools/configs/redis_local_l3.conf
Executable file
@@ -0,0 +1,28 @@
|
||||
# Redis configuration file example
|
||||
################################## INCLUDES ###################################
|
||||
|
||||
include redis_local.conf
|
||||
|
||||
# When running daemonized, Redis writes a pid file in /var/run/redis.pid by
|
||||
# default. You can specify a custom pid file location here.
|
||||
pidfile /home/felix/redis/redis/redis-server_l3.pid
|
||||
|
||||
# Accept connections on the specified port, default is 6379.
|
||||
# If port 0 is specified Redis will not listen on a TCP socket.
|
||||
port 2342
|
||||
|
||||
# Specify the path for the unix socket that will be used to listen for
|
||||
# incoming connections. There is no default, so Redis will not listen
|
||||
# on a unix socket when not specified.
|
||||
# yields better performance than loopback
|
||||
unixsocket /home/felix/redis/redis/redis_local_l3.sock
|
||||
unixsocketperm 755
|
||||
|
||||
# Specify the log file name. Also the empty string can be used to force
|
||||
# Redis to log on the standard output. Note that if you use standard
|
||||
# output for logging but daemonize, logs will be sent to /dev/null
|
||||
logfile /home/felix/redis/redis/redis-server_l3.log
|
||||
|
||||
# The filename where to dump the DB
|
||||
dbfilename dump_l3.rdb
|
||||
|
||||
28
src/redis_tools/configs/redis_local_r.conf
Executable file
28
src/redis_tools/configs/redis_local_r.conf
Executable file
@@ -0,0 +1,28 @@
|
||||
# Redis configuration file example
|
||||
################################## INCLUDES ###################################
|
||||
|
||||
include redis_local.conf
|
||||
|
||||
# When running daemonized, Redis writes a pid file in /var/run/redis.pid by
|
||||
# default. You can specify a custom pid file location here.
|
||||
pidfile /home/felix/redis/redis/redis-server_r.pid
|
||||
|
||||
# Accept connections on the specified port, default is 6379.
|
||||
# If port 0 is specified Redis will not listen on a TCP socket.
|
||||
port 2343
|
||||
|
||||
# Specify the path for the unix socket that will be used to listen for
|
||||
# incoming connections. There is no default, so Redis will not listen
|
||||
# on a unix socket when not specified.
|
||||
# yields better performance than loopback
|
||||
unixsocket /home/felix/redis/redis/redis_local_r.sock
|
||||
unixsocketperm 755
|
||||
|
||||
# Specify the log file name. Also the empty string can be used to force
|
||||
# Redis to log on the standard output. Note that if you use standard
|
||||
# output for logging but daemonize, logs will be sent to /dev/null
|
||||
logfile /home/felix/redis/redis/redis-server_r.log
|
||||
|
||||
# The filename where to dump the DB
|
||||
dbfilename dump_r.rdb
|
||||
|
||||
28
src/redis_tools/configs/redis_local_v.conf
Executable file
28
src/redis_tools/configs/redis_local_v.conf
Executable file
@@ -0,0 +1,28 @@
|
||||
# Redis configuration file example
|
||||
################################## INCLUDES ###################################
|
||||
|
||||
include redis_local.conf
|
||||
|
||||
# When running daemonized, Redis writes a pid file in /var/run/redis.pid by
|
||||
# default. You can specify a custom pid file location here.
|
||||
pidfile /home/felix/redis/redis/redis-server_v.pid
|
||||
|
||||
# Accept connections on the specified port, default is 6379.
|
||||
# If port 0 is specified Redis will not listen on a TCP socket.
|
||||
port 2344
|
||||
|
||||
# Specify the path for the unix socket that will be used to listen for
|
||||
# incoming connections. There is no default, so Redis will not listen
|
||||
# on a unix socket when not specified.
|
||||
# yields better performance than loopback
|
||||
unixsocket /home/felix/redis/redis/redis_local_v.sock
|
||||
unixsocketperm 755
|
||||
|
||||
# Specify the log file name. Also the empty string can be used to force
|
||||
# Redis to log on the standard output. Note that if you use standard
|
||||
# output for logging but daemonize, logs will be sent to /dev/null
|
||||
logfile /home/felix/redis/redis/redis-server_v.log
|
||||
|
||||
# The filename where to dump the DB
|
||||
dbfilename dump_v.rdb
|
||||
|
||||
8
src/redis_tools/flush-all.sh
Executable file
8
src/redis_tools/flush-all.sh
Executable file
@@ -0,0 +1,8 @@
|
||||
#!/bin/bash
|
||||
|
||||
read -p "Really delete all redis data? " -n 1 -r
|
||||
echo
|
||||
if [[ $REPLY =~ ^[Yy]$ ]]
|
||||
then
|
||||
for i in `seq 2337 2344`; do redis-cli -p "$i" flushall; done
|
||||
fi
|
||||
3
src/redis_tools/list-all-keys.sh
Executable file
3
src/redis_tools/list-all-keys.sh
Executable file
@@ -0,0 +1,3 @@
|
||||
#!/bin/bash
|
||||
|
||||
for i in `seq 2337 2344`; do redis-cli -p "$i" keys \*; done
|
||||
3
src/redis_tools/persist-redis.sh
Executable file
3
src/redis_tools/persist-redis.sh
Executable file
@@ -0,0 +1,3 @@
|
||||
#!/bin/bash
|
||||
|
||||
for i in `seq 2337 2344`; do redis-cli -p "$i" bgsave & sleep 4m; done
|
||||
BIN
src/redis_tools/r-4-felix
Executable file
BIN
src/redis_tools/r-4-felix
Executable file
Binary file not shown.
445
src/redis_tools/r-4-felix.c
Executable file
445
src/redis_tools/r-4-felix.c
Executable file
@@ -0,0 +1,445 @@
|
||||
#include <string.h>
|
||||
#include <ctype.h>
|
||||
#include <stdlib.h>
|
||||
#include <assert.h>
|
||||
#include <hiredis/hiredis.h>
|
||||
// #include <zlib.h>
|
||||
|
||||
#define SOCK_F "/home/felix/redis/redis/redis_local_f.sock"
|
||||
#define SOCK_F2 "/home/felix/redis/redis/redis_local_f2.sock"
|
||||
#define SOCK_F3 "/home/felix/redis/redis/redis_local_f3.sock"
|
||||
#define SOCK_L "/home/felix/redis/redis/redis_local_l.sock"
|
||||
#define SOCK_L2 "/home/felix/redis/redis/redis_local_l2.sock"
|
||||
#define SOCK_L3 "/home/felix/redis/redis/redis_local_l3.sock"
|
||||
#define SOCK_R "/home/felix/redis/redis/redis_local_r.sock"
|
||||
#define SOCK_V "/home/felix/redis/redis/redis_local_v.sock"
|
||||
|
||||
//#define MOD 524288
|
||||
#define MOD 1048576
|
||||
#define FLUSHMOD 10000
|
||||
#ifdef DEBUG
|
||||
#define CONT(x) printf("%s\n", x); \
|
||||
printf("%s", line); \
|
||||
continue
|
||||
#else
|
||||
#define CONT(x) continue
|
||||
#endif
|
||||
|
||||
unsigned int crc32_custom(unsigned char *message);
|
||||
unsigned reverse(unsigned x);
|
||||
char *getfield(const char *s, const char del, const unsigned int n);
|
||||
char *get2fields(const char *s, const char del1, const unsigned int n1, const char del2, const unsigned int n2);
|
||||
char *getfielddel(const char *s, const char del, const char quote, const unsigned int n);
|
||||
|
||||
int main(int argc, char **argv) {
|
||||
int i;
|
||||
unsigned int count = 0;
|
||||
unsigned int count_fl, count_fl2, count_fl3;
|
||||
redisContext *c_f;
|
||||
redisContext *c_f2;
|
||||
redisContext *c_f3;
|
||||
redisContext *c_l;
|
||||
redisContext *c_l2;
|
||||
redisContext *c_l3;
|
||||
redisContext *c_r;
|
||||
redisContext *c_v;
|
||||
redisReply **reply = 0;
|
||||
|
||||
if (argc < 2) {
|
||||
printf("usage %s filename\n", argv[0]);
|
||||
return 1;
|
||||
}
|
||||
|
||||
char line[4096];
|
||||
char *tmp, *tmp2;
|
||||
char rdata[4096];
|
||||
char rrname[4096];
|
||||
char rrtype[4096];
|
||||
int ts;
|
||||
|
||||
// TODO gz
|
||||
// gzFile f = gzopen(argv[1], "r")
|
||||
FILE *f = fopen(argv[1], "r");
|
||||
|
||||
if (!f) {
|
||||
printf("file %s could not be opened\n", argv[1]);
|
||||
return 1;
|
||||
}
|
||||
|
||||
c_f = redisConnectUnix(SOCK_F);
|
||||
c_f2 = redisConnectUnix(SOCK_F2);
|
||||
c_f3 = redisConnectUnix(SOCK_F3);
|
||||
c_l = redisConnectUnix(SOCK_L);
|
||||
c_l2 = redisConnectUnix(SOCK_L2);
|
||||
c_l3 = redisConnectUnix(SOCK_L3);
|
||||
c_r = redisConnectUnix(SOCK_R);
|
||||
c_v = redisConnectUnix(SOCK_V);
|
||||
|
||||
if (!c_f || !c_f2 || !c_f3 || !c_l || !c_l2 || !c_l3 || !c_r || !c_v) {
|
||||
perror("uh oh:");
|
||||
return 1;
|
||||
}
|
||||
|
||||
// TODO gz
|
||||
// while(gzgets(f, line, 4096)) {
|
||||
while(fgets(line, 4096, f)) {
|
||||
|
||||
if (!strstr(line, "\n")) {
|
||||
CONT("no newline in line buffer found. read incomplete");
|
||||
}
|
||||
|
||||
if (!(tmp = getfielddel(line, ',', '"', 2))) {
|
||||
CONT("RRTYPE could not be parsed");
|
||||
}
|
||||
strncpy(rrtype, tmp, 4095);
|
||||
free(tmp);
|
||||
|
||||
for (i = 0; rrtype[i]; i++)
|
||||
rrtype[i] = toupper(rrtype[i]);
|
||||
|
||||
if (!strcmp(rrtype, "RRSIG")) {
|
||||
//CONT("RRSIG skipped");
|
||||
continue;
|
||||
}
|
||||
|
||||
if (!strcmp(rrtype, "TEXT") || !strcmp(rrtype, "SOA")) {
|
||||
rdata[0] = '\0';
|
||||
} else { if (!strcmp(rrtype, "SRV")) {
|
||||
|
||||
if (!(tmp = getfielddel(line, ',', '"', 4))) {
|
||||
continue; // not parsed correctly (bcause of , withing "") // should be fixed by getfield with quote
|
||||
CONT("SRV query with too few fields");
|
||||
}
|
||||
strncpy(rdata, tmp, 4095);
|
||||
free(tmp);
|
||||
} else {
|
||||
if (!(tmp = getfielddel(line, ',', '"', 0))) {
|
||||
CONT("timestamp could not be parsed");
|
||||
}
|
||||
ts = atoi(tmp);
|
||||
free(tmp);
|
||||
|
||||
if (!(tmp = getfielddel(line, ',', '"', 1))) {
|
||||
CONT("RRNAME could not be parsed");
|
||||
}
|
||||
strncpy(rrname, tmp, 4095);
|
||||
free(tmp);
|
||||
|
||||
for (i = 0; rrname[i]; i++)
|
||||
rrname[i] = tolower(rrname[i]);
|
||||
|
||||
if (!(tmp = getfielddel(line, ',', '"', 3))) {
|
||||
CONT("RDATA could not be parsed");
|
||||
}
|
||||
strcpy(rdata, tmp);
|
||||
free(tmp);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
if (ts < 0 || ts > 2147483648)
|
||||
printf("WARNING timestamp malformed: %s", line);
|
||||
|
||||
if (argc > 2 && !strcmp(argv[2], "-v"))
|
||||
printf("ts %u, rrname %s, rrtype %s, rdata %s\n", ts, rrname, rrtype, rdata);
|
||||
//continue; // TODO remove XXX
|
||||
|
||||
|
||||
unsigned int ip = 0;
|
||||
unsigned int o[4];
|
||||
|
||||
unsigned int bucket;
|
||||
char bucket_c[8];
|
||||
|
||||
char *pdns_r, *pdns_v, *pdns_fl;
|
||||
size_t pdns_r_l, pdns_v_l, pdns_fl_l;
|
||||
|
||||
pdns_r_l = strlen("r:") + strlen(rrname) + strlen(":") + strlen(rrtype);
|
||||
pdns_r = malloc(pdns_r_l + 1);
|
||||
sprintf(pdns_r, "r:%s:%s", rrname, rrtype);
|
||||
|
||||
pdns_v_l = strlen("v:") + strlen(rdata);
|
||||
pdns_v = malloc(pdns_v_l + 1);
|
||||
sprintf(pdns_v, "v:%s", rdata);
|
||||
|
||||
pdns_fl_l = strlen(rrname) + strlen(":") + strlen(rdata);
|
||||
pdns_fl = malloc(pdns_fl_l + 1);
|
||||
sprintf(pdns_fl, "%s:%s", rrname, rdata);
|
||||
|
||||
if (!strcmp(rrtype, "A")) {
|
||||
sscanf(rdata, "%u.%u.%u.%u", &o[0], &o[1], &o[2], &o[3]);
|
||||
for (i=0; i<4; i++)
|
||||
ip |= o[i] << (8 * (3-i));
|
||||
redisAppendCommand(c_r, "SADD %b %b", pdns_r, pdns_r_l, &ip, (size_t) 4);
|
||||
} else {
|
||||
redisAppendCommand(c_r, "SADD %b %b", pdns_r, pdns_r_l, &rdata, strlen(rdata));
|
||||
}
|
||||
|
||||
redisAppendCommand(c_v, "SADD %b %b", pdns_v, pdns_v_l, rrname, strlen(rrname));
|
||||
|
||||
count++;
|
||||
|
||||
|
||||
bucket = crc32_custom(rrname) % MOD;
|
||||
sprintf(bucket_c, "%c%u", 'f', bucket);
|
||||
|
||||
if (bucket < 349525) {
|
||||
redisAppendCommand(c_f, "HSETNX %b %b %b", bucket_c, strlen(bucket_c), pdns_fl, pdns_fl_l, &ts, (size_t) sizeof(int));
|
||||
bucket_c[0] = 'l';
|
||||
redisAppendCommand(c_l, "HSET %b %b %b", bucket_c, strlen(bucket_c), pdns_fl, pdns_fl_l, &ts, (size_t) sizeof(int));
|
||||
count_fl++;
|
||||
} else if (bucket < 349525*2) {
|
||||
redisAppendCommand(c_f2, "HSETNX %b %b %b", bucket_c, strlen(bucket_c), pdns_fl, pdns_fl_l, &ts, (size_t) sizeof(int));
|
||||
bucket_c[0] = 'l';
|
||||
redisAppendCommand(c_l2, "HSET %b %b %b", bucket_c, strlen(bucket_c), pdns_fl, pdns_fl_l, &ts, (size_t) sizeof(int));
|
||||
count_fl2++;
|
||||
} else {
|
||||
redisAppendCommand(c_f3, "HSETNX %b %b %b", bucket_c, strlen(bucket_c), pdns_fl, pdns_fl_l, &ts, (size_t) sizeof(int));
|
||||
bucket_c[0] = 'l';
|
||||
redisAppendCommand(c_l3, "HSET %b %b %b", bucket_c, strlen(bucket_c), pdns_fl, pdns_fl_l, &ts, (size_t) sizeof(int));
|
||||
count_fl3++;
|
||||
}
|
||||
|
||||
if ((count % FLUSHMOD) == 0) { // {{{
|
||||
for (i=0; i<count; i++) {
|
||||
if (redisGetReply(c_r, (void *)&reply) == REDIS_ERR_PROTOCOL)
|
||||
printf("protocol error\n");
|
||||
freeReplyObject(reply);
|
||||
|
||||
if (redisGetReply(c_v, (void *)&reply) == REDIS_ERR_PROTOCOL)
|
||||
printf("protocol error\n");
|
||||
freeReplyObject(reply);
|
||||
}
|
||||
|
||||
for (i=0; i<count_fl; i++) {
|
||||
if (redisGetReply(c_f, (void *)&reply) == REDIS_ERR_PROTOCOL)
|
||||
printf("protocol error\n");
|
||||
freeReplyObject(reply);
|
||||
if (redisGetReply(c_l, (void *)&reply) == REDIS_ERR_PROTOCOL)
|
||||
printf("protocol error\n");
|
||||
freeReplyObject(reply);
|
||||
}
|
||||
|
||||
for (i=0; i<count_fl2; i++) {
|
||||
if (redisGetReply(c_f2, (void *)&reply) == REDIS_ERR_PROTOCOL)
|
||||
printf("protocol error\n");
|
||||
freeReplyObject(reply);
|
||||
if (redisGetReply(c_l2, (void *)&reply) == REDIS_ERR_PROTOCOL)
|
||||
printf("protocol error\n");
|
||||
freeReplyObject(reply);
|
||||
}
|
||||
|
||||
for (i=0; i<count_fl3; i++) {
|
||||
if (redisGetReply(c_f3, (void *)&reply) == REDIS_ERR_PROTOCOL)
|
||||
printf("protocol error\n");
|
||||
freeReplyObject(reply);
|
||||
if (redisGetReply(c_l3, (void *)&reply) == REDIS_ERR_PROTOCOL)
|
||||
printf("protocol error\n");
|
||||
freeReplyObject(reply);
|
||||
}
|
||||
|
||||
|
||||
count = 0;
|
||||
count_fl = 0;
|
||||
count_fl2 = 0;
|
||||
count_fl3 = 0;
|
||||
|
||||
} // }}}
|
||||
|
||||
free(pdns_r);
|
||||
free(pdns_v);
|
||||
free(pdns_fl);
|
||||
|
||||
}
|
||||
|
||||
// {{{
|
||||
for (i=0; i<count; i++) {
|
||||
if (redisGetReply(c_r, (void *)&reply) == REDIS_ERR_PROTOCOL)
|
||||
printf("protocol error\n");
|
||||
freeReplyObject(reply);
|
||||
|
||||
if (redisGetReply(c_v, (void *)&reply) == REDIS_ERR_PROTOCOL)
|
||||
printf("protocol error\n");
|
||||
freeReplyObject(reply);
|
||||
}
|
||||
|
||||
for (i=0; i<count_fl; i++) {
|
||||
if (redisGetReply(c_f, (void *)&reply) == REDIS_ERR_PROTOCOL)
|
||||
printf("protocol error\n");
|
||||
freeReplyObject(reply);
|
||||
if (redisGetReply(c_l, (void *)&reply) == REDIS_ERR_PROTOCOL)
|
||||
printf("protocol error\n");
|
||||
freeReplyObject(reply);
|
||||
}
|
||||
|
||||
for (i=0; i<count_fl2; i++) {
|
||||
if (redisGetReply(c_f2, (void *)&reply) == REDIS_ERR_PROTOCOL)
|
||||
printf("protocol error\n");
|
||||
freeReplyObject(reply);
|
||||
if (redisGetReply(c_l2, (void *)&reply) == REDIS_ERR_PROTOCOL)
|
||||
printf("protocol error\n");
|
||||
freeReplyObject(reply);
|
||||
}
|
||||
|
||||
for (i=0; i<count_fl3; i++) {
|
||||
if (redisGetReply(c_f3, (void *)&reply) == REDIS_ERR_PROTOCOL)
|
||||
printf("protocol error\n");
|
||||
freeReplyObject(reply);
|
||||
if (redisGetReply(c_l3, (void *)&reply) == REDIS_ERR_PROTOCOL)
|
||||
printf("protocol error\n");
|
||||
freeReplyObject(reply);
|
||||
}
|
||||
|
||||
count = 0;
|
||||
count_fl = 0;
|
||||
count_fl2 = 0;
|
||||
count_fl3 = 0;
|
||||
// }}}
|
||||
|
||||
printf("%s\n", argv[1]);
|
||||
// TODO gz
|
||||
// gzclose(f);
|
||||
fclose(f);
|
||||
redisFree(c_f);
|
||||
redisFree(c_l);
|
||||
redisFree(c_r);
|
||||
redisFree(c_v);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
unsigned int crc32_custom(unsigned char *message) { // {{{
|
||||
int i, j;
|
||||
unsigned int byte, crc;
|
||||
|
||||
i = 0;
|
||||
crc = 0xFFFFFFFF;
|
||||
while (message[i] != 0) {
|
||||
byte = message[i]; // Get next byte.
|
||||
byte = reverse(byte); // 32-bit reversal.
|
||||
for (j = 0; j <= 7; j++) { // Do eight times.
|
||||
if ((int)(crc ^ byte) < 0)
|
||||
crc = (crc << 1) ^ 0x04C11DB7;
|
||||
else crc = crc << 1;
|
||||
byte = byte << 1; // Ready next msg bit.
|
||||
}
|
||||
i = i + 1;
|
||||
}
|
||||
return reverse(~crc);
|
||||
} // }}}
|
||||
|
||||
unsigned reverse(unsigned x) { // {{{
|
||||
x = ((x & 0x55555555) << 1) | ((x >> 1) & 0x55555555);
|
||||
x = ((x & 0x33333333) << 2) | ((x >> 2) & 0x33333333);
|
||||
x = ((x & 0x0F0F0F0F) << 4) | ((x >> 4) & 0x0F0F0F0F);
|
||||
x = (x << 24) | ((x & 0xFF00) << 8) |
|
||||
((x >> 8) & 0xFF00) | (x >> 24);
|
||||
return x;
|
||||
} // }}}
|
||||
|
||||
char *getfield(const char *s, const char del, const unsigned int n) { // {{{
|
||||
|
||||
unsigned int pos = 0;
|
||||
unsigned int chars = 0;
|
||||
char *start = (char *)s;
|
||||
char *result;
|
||||
|
||||
if (!start)
|
||||
return NULL;
|
||||
|
||||
while (pos != n) {
|
||||
if (!*start)
|
||||
return NULL;
|
||||
|
||||
if (*start == del)
|
||||
pos++;
|
||||
|
||||
start++;
|
||||
}
|
||||
|
||||
while (start[chars]) {
|
||||
if (start[chars] == del)
|
||||
break;
|
||||
chars++;
|
||||
}
|
||||
|
||||
if (chars) {
|
||||
result = malloc(chars + 1);
|
||||
memcpy(result, start, chars);
|
||||
result[chars] = '\0';
|
||||
return result;
|
||||
}
|
||||
|
||||
return NULL;
|
||||
} // }}}
|
||||
|
||||
char *get2fields(const char *s, const char del1, const unsigned int n1, const char del2, const unsigned int n2) { // {{{
|
||||
if (!s)
|
||||
return NULL;
|
||||
|
||||
char *tmp, *tmp2;
|
||||
|
||||
tmp = getfield(s, del1, n1);
|
||||
|
||||
if (!tmp) {
|
||||
return NULL;
|
||||
}
|
||||
|
||||
tmp2 = getfield(tmp, del2, n2);
|
||||
free(tmp);
|
||||
|
||||
if (!tmp2)
|
||||
return NULL;
|
||||
|
||||
return tmp2;
|
||||
} // }}}
|
||||
|
||||
/*
|
||||
* del must not be equal to quote
|
||||
*/
|
||||
char *getfielddel(const char *s, const char del, const char quote, const unsigned int n) { // {{{
|
||||
|
||||
unsigned int pos = 0;
|
||||
unsigned int chars = 0;
|
||||
char open = 0;
|
||||
char *start = (char *)s;
|
||||
char *result;
|
||||
|
||||
if (!start)
|
||||
return NULL;
|
||||
|
||||
while (pos != n) {
|
||||
if (!*start)
|
||||
return NULL;
|
||||
|
||||
if (*start == quote)
|
||||
open = !open;
|
||||
|
||||
if (*start == del && !open)
|
||||
pos++;
|
||||
|
||||
start++;
|
||||
}
|
||||
|
||||
// can we do this more elegantly?
|
||||
if (*start == quote)
|
||||
start++;
|
||||
|
||||
while (start[chars]) {
|
||||
if (start[chars] == quote) //start[chars] == del)
|
||||
break;
|
||||
chars++;
|
||||
}
|
||||
|
||||
if (chars) {
|
||||
result = malloc(chars + 1);
|
||||
// what, if result was 0?
|
||||
memcpy(result, start, chars);
|
||||
result[chars] = '\0';
|
||||
return result;
|
||||
}
|
||||
|
||||
return NULL;
|
||||
|
||||
} // }}}
|
||||
|
||||
4
src/redis_tools/read-parallel.sh
Executable file
4
src/redis_tools/read-parallel.sh
Executable file
@@ -0,0 +1,4 @@
|
||||
#!/bin/bash
|
||||
|
||||
find /run/media/felix/disk/pDNS -iname 'pdns_capture.pcap-*-2017-09-0[1-7]*.csv' | sort -t- -k3 | xargs -P10 -n1 ./r-4-felix
|
||||
|
||||
Reference in New Issue
Block a user