Refactor and optimize Stepper/Planner

This commit is contained in:
Scott Lahteine
2018-05-20 08:19:11 -05:00
parent 38e1823375
commit 8f26c3a6d3
11 changed files with 991 additions and 792 deletions

View File

@@ -49,7 +49,7 @@ enum BlockFlagBit : char {
// from a safe speed (in consideration of jerking from zero speed).
BLOCK_BIT_NOMINAL_LENGTH,
// The block is busy
// The block is busy, being interpreted by the stepper ISR
BLOCK_BIT_BUSY,
// The block is segment 2+ of a longer move
@@ -80,24 +80,35 @@ typedef struct {
uint8_t flag; // Block flags (See BlockFlag enum above)
unsigned char active_extruder; // The extruder to move (if E move)
// Fields used by the motion planner to manage acceleration
float nominal_speed_sqr, // The nominal speed for this block in (mm/sec)^2
entry_speed_sqr, // Entry speed at previous-current junction in (mm/sec)^2
max_entry_speed_sqr, // Maximum allowable junction entry speed in (mm/sec)^2
millimeters, // The total travel of this block in mm
acceleration; // acceleration mm/sec^2
// Fields used by the Bresenham algorithm for tracing the line
int32_t steps[NUM_AXIS]; // Step count along each axis
union {
// Data used by all move blocks
struct {
// Fields used by the Bresenham algorithm for tracing the line
uint32_t steps[NUM_AXIS]; // Step count along each axis
};
// Data used by all sync blocks
struct {
int32_t position[NUM_AXIS]; // New position to force when this sync block is executed
};
};
uint32_t step_event_count; // The number of step events required to complete this block
uint8_t active_extruder; // The extruder to move (if E move)
#if ENABLED(MIXING_EXTRUDER)
uint32_t mix_event_count[MIXING_STEPPERS]; // Scaled step_event_count for the mixing steppers
#endif
// Settings for the trapezoid generator
int32_t accelerate_until, // The index of the step event on which to stop acceleration
decelerate_after; // The index of the step event on which to start decelerating
uint32_t nominal_rate, // The nominal step rate for this block in step_events/sec
initial_rate, // The jerk-adjusted step rate at start of block
final_rate, // The minimal rate at exit
acceleration_steps_per_s2; // acceleration steps/sec^2
uint32_t accelerate_until, // The index of the step event on which to stop acceleration
decelerate_after; // The index of the step event on which to start decelerating
#if ENABLED(BEZIER_JERK_CONTROL)
uint32_t cruise_rate; // The actual cruise rate to use, between end of the acceleration phase and start of deceleration phase
@@ -106,7 +117,7 @@ typedef struct {
uint32_t acceleration_time_inverse, // Inverse of acceleration and deceleration periods, expressed as integer. Scale depends on CPU being used
deceleration_time_inverse;
#else
int32_t acceleration_rate; // The acceleration rate used for acceleration calculation
uint32_t acceleration_rate; // The acceleration rate used for acceleration calculation
#endif
uint8_t direction_bits; // The direction bit set for this block (refers to *_DIRECTION_BIT in config.h)
@@ -120,12 +131,10 @@ typedef struct {
float e_D_ratio;
#endif
// Fields used by the motion planner to manage acceleration
float nominal_speed, // The nominal speed for this block in mm/sec
entry_speed, // Entry speed at previous-current junction in mm/sec
max_entry_speed, // Maximum allowable junction entry speed in mm/sec
millimeters, // The total travel of this block in mm
acceleration; // acceleration mm/sec^2
uint32_t nominal_rate, // The nominal step rate for this block in step_events/sec
initial_rate, // The jerk-adjusted step rate at start of block
final_rate, // The minimal rate at exit
acceleration_steps_per_s2; // acceleration steps/sec^2
#if FAN_COUNT > 0
uint16_t fan_speed[FAN_COUNT];
@@ -162,6 +171,7 @@ class Planner {
static block_t block_buffer[BLOCK_BUFFER_SIZE];
static volatile uint8_t block_buffer_head, // Index of the next block to be pushed
block_buffer_tail; // Index of the busy block, if any
static uint16_t cleaning_buffer_counter; // A counter to disable queuing of blocks
#if ENABLED(DISTINCT_E_FACTORS)
static uint8_t last_extruder; // Respond to extruder change
@@ -229,6 +239,10 @@ class Planner {
#endif
#endif
#if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
static bool abort_on_endstop_hit;
#endif
private:
/**
@@ -243,9 +257,9 @@ class Planner {
static float previous_speed[NUM_AXIS];
/**
* Nominal speed of previous path line segment
* Nominal speed of previous path line segment (mm/s)^2
*/
static float previous_nominal_speed;
static float previous_nominal_speed_sqr;
/**
* Limit where 64bit math is necessary for acceleration calculation
@@ -304,15 +318,6 @@ class Planner {
// Manage fans, paste pressure, etc.
static void check_axes_activity();
/**
* Number of moves currently in the planner
*/
FORCE_INLINE static uint8_t movesplanned() { return BLOCK_MOD(block_buffer_head - block_buffer_tail + BLOCK_BUFFER_SIZE); }
FORCE_INLINE static void clear_block_buffer() { block_buffer_head = block_buffer_tail = 0; }
FORCE_INLINE static bool is_full() { return block_buffer_tail == next_block_index(block_buffer_head); }
// Update multipliers based on new diameter measurements
static void calculate_volumetric_multipliers();
@@ -420,16 +425,32 @@ class Planner {
#define ARG_Z const float &rz
#endif
// Number of moves currently in the planner
FORCE_INLINE static uint8_t movesplanned() { return BLOCK_MOD(block_buffer_head - block_buffer_tail); }
// Remove all blocks from the buffer
FORCE_INLINE static void clear_block_buffer() { block_buffer_head = block_buffer_tail = 0; }
// Check if movement queue is full
FORCE_INLINE static bool is_full() { return block_buffer_tail == next_block_index(block_buffer_head); }
// Get count of movement slots free
FORCE_INLINE static uint8_t moves_free() { return BLOCK_BUFFER_SIZE - 1 - movesplanned(); }
/**
* Planner::get_next_free_block
*
* - Get the next head index (passed by reference)
* - Wait for a space to open up in the planner
* - Return the head block
* - Get the next head indices (passed by reference)
* - Wait for the number of spaces to open up in the planner
* - Return the first head block
*/
FORCE_INLINE static block_t* get_next_free_block(uint8_t &next_buffer_head) {
FORCE_INLINE static block_t* get_next_free_block(uint8_t &next_buffer_head, const uint8_t count=1) {
// Wait until there are enough slots free
while (moves_free() < count) { idle(); }
// Return the first available block
next_buffer_head = next_block_index(block_buffer_head);
while (block_buffer_tail == next_buffer_head) idle(); // while (is_full)
return &block_buffer[block_buffer_head];
}
@@ -442,8 +463,30 @@ class Planner {
* fr_mm_s - (target) speed of the move
* extruder - target extruder
* millimeters - the length of the movement, if known
*
* Returns true if movement was buffered, false otherwise
*/
static void _buffer_steps(const int32_t (&target)[XYZE]
static bool _buffer_steps(const int32_t (&target)[XYZE]
#if HAS_POSITION_FLOAT
, const float (&target_float)[XYZE]
#endif
, float fr_mm_s, const uint8_t extruder, const float &millimeters=0.0
);
/**
* Planner::_populate_block
*
* Fills a new linear movement in the block (in terms of steps).
*
* target - target position in steps units
* fr_mm_s - (target) speed of the move
* extruder - target extruder
* millimeters - the length of the movement, if known
*
* Returns true is movement is acceptable, false otherwise
*/
static bool _populate_block(block_t * const block, bool split_move,
const int32_t (&target)[XYZE]
#if HAS_POSITION_FLOAT
, const float (&target_float)[XYZE]
#endif
@@ -468,7 +511,7 @@ class Planner {
* extruder - target extruder
* millimeters - the length of the movement, if known
*/
static void buffer_segment(const float &a, const float &b, const float &c, const float &e, const float &fr_mm_s, const uint8_t extruder, const float &millimeters=0.0);
static bool buffer_segment(const float &a, const float &b, const float &c, const float &e, const float &fr_mm_s, const uint8_t extruder, const float &millimeters=0.0);
static void _set_position_mm(const float &a, const float &b, const float &c, const float &e);
@@ -485,11 +528,11 @@ class Planner {
* extruder - target extruder
* millimeters - the length of the movement, if known
*/
FORCE_INLINE static void buffer_line(ARG_X, ARG_Y, ARG_Z, const float &e, const float &fr_mm_s, const uint8_t extruder, const float millimeters = 0.0) {
FORCE_INLINE static bool buffer_line(ARG_X, ARG_Y, ARG_Z, const float &e, const float &fr_mm_s, const uint8_t extruder, const float millimeters = 0.0) {
#if PLANNER_LEVELING && IS_CARTESIAN
apply_leveling(rx, ry, rz);
#endif
buffer_segment(rx, ry, rz, e, fr_mm_s, extruder, millimeters);
return buffer_segment(rx, ry, rz, e, fr_mm_s, extruder, millimeters);
}
/**
@@ -502,7 +545,7 @@ class Planner {
* extruder - target extruder
* millimeters - the length of the movement, if known
*/
FORCE_INLINE static void buffer_line_kinematic(const float (&cart)[XYZE], const float &fr_mm_s, const uint8_t extruder, const float millimeters = 0.0) {
FORCE_INLINE static bool buffer_line_kinematic(const float (&cart)[XYZE], const float &fr_mm_s, const uint8_t extruder, const float millimeters = 0.0) {
#if PLANNER_LEVELING
float raw[XYZ] = { cart[X_AXIS], cart[Y_AXIS], cart[Z_AXIS] };
apply_leveling(raw);
@@ -511,9 +554,9 @@ class Planner {
#endif
#if IS_KINEMATIC
inverse_kinematics(raw);
buffer_segment(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], cart[E_AXIS], fr_mm_s, extruder, millimeters);
return buffer_segment(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], cart[E_AXIS], fr_mm_s, extruder, millimeters);
#else
buffer_segment(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS], cart[E_AXIS], fr_mm_s, extruder, millimeters);
return buffer_segment(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS], cart[E_AXIS], fr_mm_s, extruder, millimeters);
#endif
}
@@ -537,11 +580,6 @@ class Planner {
FORCE_INLINE static void set_z_position_mm(const float &z) { set_position_mm(Z_AXIS, z); }
FORCE_INLINE static void set_e_position_mm(const float &e) { set_position_mm(E_AXIS, e); }
/**
* Sync from the stepper positions. (e.g., after an interrupted move)
*/
static void sync_from_steppers();
/**
* Get an axis position according to stepper position(s)
* For CORE machines apply translation from ABC to XYZ.
@@ -553,35 +591,38 @@ class Planner {
FORCE_INLINE static float get_axis_position_degrees(const AxisEnum axis) { return get_axis_position_mm(axis); }
#endif
// Called to force a quick stop of the machine (for example, when an emergency
// stop is required, or when endstops are hit)
static void quick_stop();
// Called when an endstop is triggered. Causes the machine to stop inmediately
static void endstop_triggered(const AxisEnum axis);
// Triggered position of an axis in mm (not core-savvy)
static float triggered_position_mm(const AxisEnum axis);
// Block until all buffered steps are executed / cleaned
static void synchronize();
// Wait for moves to finish and disable all steppers
static void finish_and_disable();
// Periodic tick to handle cleaning timeouts
// Called from the Temperature ISR at ~1kHz
static void tick() {
if (cleaning_buffer_counter) {
--cleaning_buffer_counter;
#if ENABLED(SD_FINISHED_STEPPERRELEASE) && defined(SD_FINISHED_RELEASECOMMAND)
if (!cleaning_buffer_counter) enqueue_and_echo_commands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
#endif
}
}
/**
* Does the buffer have any blocks queued?
*/
FORCE_INLINE static bool has_blocks_queued() { return (block_buffer_head != block_buffer_tail); }
//
// Block until all buffered steps are executed
//
static void synchronize();
/**
* "Discard" the block and "release" the memory.
* Called when the current block is no longer needed.
*/
FORCE_INLINE static void discard_current_block() {
if (has_blocks_queued())
block_buffer_tail = BLOCK_MOD(block_buffer_tail + 1);
}
/**
* "Discard" the next block if it's continued.
* Called after an interrupted move to throw away the rest of the move.
*/
FORCE_INLINE static bool discard_continued_block() {
const bool discard = has_blocks_queued() && TEST(block_buffer[block_buffer_tail].flag, BLOCK_BIT_CONTINUED);
if (discard) discard_current_block();
return discard;
}
/**
* The current block. NULL if the buffer is empty.
* This also marks the block as busy.
@@ -603,23 +644,42 @@ class Planner {
#if ENABLED(ULTRA_LCD)
block_buffer_runtime_us -= block->segment_time_us; // We can't be sure how long an active block will take, so don't count it.
#endif
// Mark the block as busy, so the planner does not attempt to replan it
SBI(block->flag, BLOCK_BIT_BUSY);
return block;
}
else {
#if ENABLED(ULTRA_LCD)
clear_block_buffer_runtime(); // paranoia. Buffer is empty now - so reset accumulated time to zero.
#endif
return NULL;
}
// The queue became empty
#if ENABLED(ULTRA_LCD)
clear_block_buffer_runtime(); // paranoia. Buffer is empty now - so reset accumulated time to zero.
#endif
return NULL;
}
/**
* "Discard" the block and "release" the memory.
* Called when the current block is no longer needed.
* NB: There MUST be a current block to call this function!!
*/
FORCE_INLINE static void discard_current_block() {
block_buffer_tail = BLOCK_MOD(block_buffer_tail + 1);
}
#if ENABLED(ULTRA_LCD)
static uint16_t block_buffer_runtime() {
CRITICAL_SECTION_START
millis_t bbru = block_buffer_runtime_us;
CRITICAL_SECTION_END
// Protect the access to the variable. Only required for AVR, as
// any 32bit CPU offers atomic access to 32bit variables
bool was_enabled = STEPPER_ISR_ENABLED();
if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT();
millis_t bbru = block_buffer_runtime_us;
// Reenable Stepper ISR
if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT();
// To translate µs to ms a division by 1000 would be required.
// We introduce 2.4% error here by dividing by 1024.
// Doesn't matter because block_buffer_runtime_us is already too small an estimation.
@@ -630,9 +690,15 @@ class Planner {
}
static void clear_block_buffer_runtime() {
CRITICAL_SECTION_START
block_buffer_runtime_us = 0;
CRITICAL_SECTION_END
// Protect the access to the variable. Only required for AVR, as
// any 32bit CPU offers atomic access to 32bit variables
bool was_enabled = STEPPER_ISR_ENABLED();
if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT();
block_buffer_runtime_us = 0;
// Reenable Stepper ISR
if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT();
}
#endif
@@ -675,12 +741,12 @@ class Planner {
}
/**
* Calculate the maximum allowable speed at this point, in order
* to reach 'target_velocity' using 'acceleration' within a given
* Calculate the maximum allowable speed squared at this point, in order
* to reach 'target_velocity_sqr' using 'acceleration' within a given
* 'distance'.
*/
static float max_allowable_speed(const float &accel, const float &target_velocity, const float &distance) {
return SQRT(sq(target_velocity) - 2 * accel * distance);
static float max_allowable_speed_sqr(const float &accel, const float &target_velocity_sqr, const float &distance) {
return target_velocity_sqr - 2 * accel * distance;
}
#if ENABLED(BEZIER_JERK_CONTROL)